annotate examples/basic_FFT_phase_vocoder/render.cpp @ 369:75689b7cd57b prerelease

Updated rsync command and command-line options
author Giulio Moro <giuliomoro@yahoo.it>
date Thu, 09 Jun 2016 02:48:58 +0100
parents 1feb9c23ac57
children db2fe4e1b88e
rev   line source
giuliomoro@250 1 /*
giuliomoro@250 2 * render.cpp
giuliomoro@250 3 *
giuliomoro@250 4 * Created on: Oct 24, 2014
giuliomoro@250 5 * Author: parallels
giuliomoro@250 6 */
giuliomoro@250 7
giuliomoro@250 8
giuliomoro@301 9 #include <Bela.h>
giuliomoro@250 10 #include <rtdk.h>
giuliomoro@250 11 #include <NE10.h> // NEON FFT library
giuliomoro@250 12 #include <cmath>
giuliomoro@250 13 #include "SampleData.h"
giuliomoro@250 14 #include <Midi.h>
giuliomoro@250 15
giuliomoro@250 16 #define BUFFER_SIZE 16384
giuliomoro@250 17
giuliomoro@250 18 // TODO: your buffer and counter go here!
giuliomoro@250 19 float gInputBuffer[BUFFER_SIZE];
giuliomoro@250 20 int gInputBufferPointer = 0;
giuliomoro@250 21 float gOutputBuffer[BUFFER_SIZE];
giuliomoro@250 22 int gOutputBufferWritePointer = 0;
giuliomoro@250 23 int gOutputBufferReadPointer = 0;
giuliomoro@250 24 int gSampleCount = 0;
giuliomoro@250 25
giuliomoro@250 26 float *gWindowBuffer;
giuliomoro@250 27
giuliomoro@250 28 // -----------------------------------------------
giuliomoro@250 29 // These variables used internally in the example:
giuliomoro@250 30 int gFFTSize = 2048;
giuliomoro@250 31 int gHopSize = 512;
giuliomoro@250 32 int gPeriod = 512;
giuliomoro@250 33 float gFFTScaleFactor = 0;
giuliomoro@250 34
giuliomoro@250 35 // FFT vars
giuliomoro@250 36 ne10_fft_cpx_float32_t* timeDomainIn;
giuliomoro@250 37 ne10_fft_cpx_float32_t* timeDomainOut;
giuliomoro@250 38 ne10_fft_cpx_float32_t* frequencyDomain;
giuliomoro@250 39 ne10_fft_cfg_float32_t cfg;
giuliomoro@250 40
giuliomoro@250 41 // Sample info
giuliomoro@250 42 SampleData gSampleData; // User defined structure to get complex data from main
giuliomoro@250 43 int gReadPtr = 0; // Position of last read sample from file
giuliomoro@250 44
giuliomoro@250 45 // Auxiliary task for calculating FFT
giuliomoro@250 46 AuxiliaryTask gFFTTask;
giuliomoro@250 47 int gFFTInputBufferPointer = 0;
giuliomoro@250 48 int gFFTOutputBufferPointer = 0;
giuliomoro@250 49
giuliomoro@250 50 void process_fft_background();
giuliomoro@250 51
giuliomoro@250 52
giuliomoro@250 53 int gEffect = 0; // change this here or with midi CC
giuliomoro@250 54 enum{
giuliomoro@250 55 kBypass,
giuliomoro@250 56 kRobot,
giuliomoro@250 57 kWhisper,
giuliomoro@250 58 };
giuliomoro@250 59
giuliomoro@250 60 float gDryWet = 1; // mix between the unprocessed and processed sound
giuliomoro@250 61 float gPlaybackLive = 0.5f; // mix between the file playback and the live audio input
giuliomoro@250 62 float gGain = 1; // overall gain
giuliomoro@250 63 Midi midi;
giuliomoro@250 64 void midiCallback(MidiChannelMessage message, void* arg){
giuliomoro@250 65 if(message.getType() == kmmNoteOn){
giuliomoro@250 66 if(message.getDataByte(1) > 0){
giuliomoro@250 67 int note = message.getDataByte(0);
giuliomoro@250 68 float frequency = powf(2, (note-69)/12.f)*440;
giuliomoro@250 69 gPeriod = (int)(44100 / frequency + 0.5);
giuliomoro@250 70 printf("\nnote: %d, frequency: %f, hop: %d\n", note, frequency, gPeriod);
giuliomoro@250 71 }
giuliomoro@250 72 }
giuliomoro@250 73
giuliomoro@250 74 bool shouldPrint = false;
giuliomoro@250 75 if(message.getType() == kmmControlChange){
giuliomoro@250 76 float data = message.getDataByte(1) / 127.0f;
giuliomoro@250 77 switch (message.getDataByte(0)){
giuliomoro@250 78 case 2 :
giuliomoro@250 79 gEffect = (int)(data * 2 + 0.5); // CC2 selects an effect between 0,1,2
giuliomoro@250 80 break;
giuliomoro@250 81 case 3 :
giuliomoro@250 82 gPlaybackLive = data;
giuliomoro@250 83 break;
giuliomoro@250 84 case 4 :
giuliomoro@250 85 gDryWet = data;
giuliomoro@250 86 break;
giuliomoro@250 87 case 5:
giuliomoro@250 88 gGain = data*10;
giuliomoro@250 89 break;
giuliomoro@250 90 default:
giuliomoro@250 91 shouldPrint = true;
giuliomoro@250 92 }
giuliomoro@250 93 }
giuliomoro@250 94 if(shouldPrint){
giuliomoro@250 95 message.prettyPrint();
giuliomoro@250 96 }
giuliomoro@250 97 }
giuliomoro@250 98
giuliomoro@250 99 // userData holds an opaque pointer to a data structure that was passed
giuliomoro@250 100 // in from the call to initAudio().
giuliomoro@250 101 //
giuliomoro@250 102 // Return true on success; returning false halts the program.
giuliomoro@301 103 bool setup(BelaContext* context, void* userData)
giuliomoro@250 104 {
giuliomoro@250 105 midi.readFrom(0);
giuliomoro@250 106 midi.setParserCallback(midiCallback);
giuliomoro@250 107 // Retrieve a parameter passed in from the initAudio() call
giuliomoro@250 108 gSampleData = *(SampleData *)userData;
giuliomoro@250 109
giuliomoro@250 110 gFFTScaleFactor = 1.0f / (float)gFFTSize;
giuliomoro@250 111 gOutputBufferWritePointer += gHopSize;
giuliomoro@250 112
giuliomoro@250 113 timeDomainIn = (ne10_fft_cpx_float32_t*) NE10_MALLOC (gFFTSize * sizeof (ne10_fft_cpx_float32_t));
giuliomoro@250 114 timeDomainOut = (ne10_fft_cpx_float32_t*) NE10_MALLOC (gFFTSize * sizeof (ne10_fft_cpx_float32_t));
giuliomoro@250 115 frequencyDomain = (ne10_fft_cpx_float32_t*) NE10_MALLOC (gFFTSize * sizeof (ne10_fft_cpx_float32_t));
giuliomoro@250 116 cfg = ne10_fft_alloc_c2c_float32 (gFFTSize);
giuliomoro@250 117
giuliomoro@250 118 memset(timeDomainOut, 0, gFFTSize * sizeof (ne10_fft_cpx_float32_t));
giuliomoro@250 119 memset(gOutputBuffer, 0, BUFFER_SIZE * sizeof(float));
giuliomoro@250 120
giuliomoro@250 121 // Allocate the window buffer based on the FFT size
giuliomoro@250 122 gWindowBuffer = (float *)malloc(gFFTSize * sizeof(float));
giuliomoro@250 123 if(gWindowBuffer == 0)
giuliomoro@250 124 return false;
giuliomoro@250 125
giuliomoro@250 126 // Calculate a Hann window
giuliomoro@250 127 for(int n = 0; n < gFFTSize; n++) {
giuliomoro@250 128 gWindowBuffer[n] = 0.5f * (1.0f - cosf(2.0 * M_PI * n / (float)(gFFTSize - 1)));
giuliomoro@250 129 }
giuliomoro@250 130
giuliomoro@250 131 // Initialise auxiliary tasks
giuliomoro@301 132 if((gFFTTask = Bela_createAuxiliaryTask(&process_fft_background, 90, "fft-calculation")) == 0)
giuliomoro@250 133 return false;
giuliomoro@251 134 rt_printf("You are listening to an FFT phase-vocoder with overlap-and-add.\n"
giuliomoro@250 135 "Use Midi Control Change to control:\n"
giuliomoro@251 136 "CC 2: effect type (bypass/robotization/whisperization)\n"
giuliomoro@251 137 "CC 3: mix between recorded sample and live audio input\n"
giuliomoro@251 138 "CC 4: mix between the unprocessed and processed sound\n"
giuliomoro@251 139 "CC 5: gain\n"
giuliomoro@250 140 );
giuliomoro@250 141 return true;
giuliomoro@250 142 }
giuliomoro@250 143
giuliomoro@250 144 // This function handles the FFT processing in this example once the buffer has
giuliomoro@250 145 // been assembled.
giuliomoro@250 146 void process_fft(float *inBuffer, int inWritePointer, float *outBuffer, int outWritePointer)
giuliomoro@250 147 {
giuliomoro@250 148 // Copy buffer into FFT input
giuliomoro@250 149 int pointer = (inWritePointer - gFFTSize + BUFFER_SIZE) % BUFFER_SIZE;
giuliomoro@250 150 for(int n = 0; n < gFFTSize; n++) {
giuliomoro@250 151 timeDomainIn[n].r = (ne10_float32_t) inBuffer[pointer] * gWindowBuffer[n];
giuliomoro@250 152 timeDomainIn[n].i = 0;
giuliomoro@250 153
giuliomoro@250 154 pointer++;
giuliomoro@250 155 if(pointer >= BUFFER_SIZE)
giuliomoro@250 156 pointer = 0;
giuliomoro@250 157 }
giuliomoro@250 158
giuliomoro@250 159 // Run the FFT
giuliomoro@250 160 ne10_fft_c2c_1d_float32_neon (frequencyDomain, timeDomainIn, cfg->twiddles, cfg->factors, gFFTSize, 0);
giuliomoro@250 161
giuliomoro@250 162 switch (gEffect){
giuliomoro@250 163 case kRobot :
giuliomoro@250 164 // Robotise the output
giuliomoro@250 165 for(int n = 0; n < gFFTSize; n++) {
giuliomoro@250 166 float amplitude = sqrtf(frequencyDomain[n].r * frequencyDomain[n].r + frequencyDomain[n].i * frequencyDomain[n].i);
giuliomoro@250 167 frequencyDomain[n].r = amplitude;
giuliomoro@250 168 frequencyDomain[n].i = 0;
giuliomoro@250 169 }
giuliomoro@250 170 break;
giuliomoro@250 171 case kWhisper :
giuliomoro@250 172 for(int n = 0; n < gFFTSize; n++) {
giuliomoro@250 173 float amplitude = sqrtf(frequencyDomain[n].r * frequencyDomain[n].r + frequencyDomain[n].i * frequencyDomain[n].i);
giuliomoro@250 174 float phase = rand()/(float)RAND_MAX * 2 * M_PI;
giuliomoro@250 175 frequencyDomain[n].r = cosf(phase) * amplitude;
giuliomoro@250 176 frequencyDomain[n].i = sinf(phase) * amplitude;
giuliomoro@250 177 }
giuliomoro@250 178 break;
giuliomoro@250 179 case kBypass:
giuliomoro@250 180 //bypass
giuliomoro@250 181 break;
giuliomoro@250 182 }
giuliomoro@250 183
giuliomoro@250 184 // Run the inverse FFT
giuliomoro@250 185 ne10_fft_c2c_1d_float32_neon (timeDomainOut, frequencyDomain, cfg->twiddles, cfg->factors, gFFTSize, 1);
giuliomoro@250 186 // Overlap-and-add timeDomainOut into the output buffer
giuliomoro@250 187 pointer = outWritePointer;
giuliomoro@250 188 for(int n = 0; n < gFFTSize; n++) {
giuliomoro@250 189 outBuffer[pointer] += (timeDomainOut[n].r) * gFFTScaleFactor;
giuliomoro@250 190 if(isnan(outBuffer[pointer]))
giuliomoro@250 191 rt_printf("outBuffer OLA\n");
giuliomoro@250 192 pointer++;
giuliomoro@250 193 if(pointer >= BUFFER_SIZE)
giuliomoro@250 194 pointer = 0;
giuliomoro@250 195 }
giuliomoro@250 196 }
giuliomoro@250 197
giuliomoro@250 198 // Function to process the FFT in a thread at lower priority
giuliomoro@250 199 void process_fft_background() {
giuliomoro@250 200 process_fft(gInputBuffer, gFFTInputBufferPointer, gOutputBuffer, gFFTOutputBufferPointer);
giuliomoro@250 201 }
giuliomoro@250 202
giuliomoro@250 203 // render() is called regularly at the highest priority by the audio engine.
giuliomoro@250 204 // Input and output are given from the audio hardware and the other
giuliomoro@250 205 // ADCs and DACs (if available). If only audio is available, numMatrixFrames
giuliomoro@250 206 // will be 0.
giuliomoro@301 207 void render(BelaContext* context, void* userData)
giuliomoro@250 208 {
giuliomoro@250 209 float* audioIn = context->audioIn;
giuliomoro@250 210 float* audioOut = context->audioOut;
giuliomoro@250 211 int numAudioFrames = context->audioFrames;
giuliomoro@250 212 int numAudioChannels = context->audioChannels;
giuliomoro@250 213 // ------ this code internal to the demo; leave as is ----------------
giuliomoro@250 214
giuliomoro@250 215 // Prep the "input" to be the sound file played in a loop
giuliomoro@250 216 for(int n = 0; n < numAudioFrames; n++) {
giuliomoro@250 217 if(gReadPtr < gSampleData.sampleLen)
giuliomoro@250 218 audioIn[2*n] = audioIn[2*n+1] = gSampleData.samples[gReadPtr]*(1-gPlaybackLive) +
andrewm@308 219 gPlaybackLive*0.5f*(audioRead(context,n,0)+audioRead(context,n,1));
giuliomoro@250 220 else
giuliomoro@250 221 audioIn[2*n] = audioIn[2*n+1] = 0;
giuliomoro@250 222 if(++gReadPtr >= gSampleData.sampleLen)
giuliomoro@250 223 gReadPtr = 0;
giuliomoro@250 224 }
giuliomoro@250 225 // -------------------------------------------------------------------
giuliomoro@250 226
giuliomoro@250 227 for(int n = 0; n < numAudioFrames; n++) {
giuliomoro@250 228 gInputBuffer[gInputBufferPointer] = ((audioIn[n*numAudioChannels] + audioIn[n*numAudioChannels+1]) * 0.5);
giuliomoro@250 229
giuliomoro@250 230 // Copy output buffer to output
giuliomoro@250 231 for(int channel = 0; channel < numAudioChannels; channel++){
giuliomoro@250 232 audioOut[n * numAudioChannels + channel] = gOutputBuffer[gOutputBufferReadPointer] * gGain * gDryWet + (1 - gDryWet) * audioIn[n * numAudioChannels + channel];
giuliomoro@250 233 }
giuliomoro@250 234
giuliomoro@250 235 // Clear the output sample in the buffer so it is ready for the next overlap-add
giuliomoro@250 236 gOutputBuffer[gOutputBufferReadPointer] = 0;
giuliomoro@250 237 gOutputBufferReadPointer++;
giuliomoro@250 238 if(gOutputBufferReadPointer >= BUFFER_SIZE)
giuliomoro@250 239 gOutputBufferReadPointer = 0;
giuliomoro@250 240 gOutputBufferWritePointer++;
giuliomoro@250 241 if(gOutputBufferWritePointer >= BUFFER_SIZE)
giuliomoro@250 242 gOutputBufferWritePointer = 0;
giuliomoro@250 243
giuliomoro@250 244 gInputBufferPointer++;
giuliomoro@250 245 if(gInputBufferPointer >= BUFFER_SIZE)
giuliomoro@250 246 gInputBufferPointer = 0;
giuliomoro@250 247
giuliomoro@250 248 gSampleCount++;
giuliomoro@250 249 if(gSampleCount >= gHopSize) {
giuliomoro@250 250 //process_fft(gInputBuffer, gInputBufferPointer, gOutputBuffer, gOutputBufferPointer);
giuliomoro@250 251 gFFTInputBufferPointer = gInputBufferPointer;
giuliomoro@250 252 gFFTOutputBufferPointer = gOutputBufferWritePointer;
giuliomoro@301 253 Bela_scheduleAuxiliaryTask(gFFTTask);
giuliomoro@250 254
giuliomoro@250 255 gSampleCount = 0;
giuliomoro@250 256 }
giuliomoro@250 257 }
giuliomoro@250 258 gHopSize = gPeriod;
giuliomoro@250 259 }
giuliomoro@250 260
giuliomoro@250 261 // cleanup_render() is called once at the end, after the audio has stopped.
giuliomoro@250 262 // Release any resources that were allocated in initialise_render().
giuliomoro@250 263
giuliomoro@301 264 void cleanup(BelaContext* context, void* userData)
giuliomoro@250 265 {
giuliomoro@250 266 NE10_FREE(timeDomainIn);
giuliomoro@250 267 NE10_FREE(timeDomainOut);
giuliomoro@250 268 NE10_FREE(frequencyDomain);
giuliomoro@250 269 NE10_FREE(cfg);
giuliomoro@250 270 free(gWindowBuffer);
giuliomoro@250 271 }