annotate examples/basic/render.cpp @ 433:6c6e29391ec9 prerelease

Updated Eclipse project
author Giulio Moro <giuliomoro@yahoo.it>
date Fri, 17 Jun 2016 00:42:01 +0100
parents 9dc5a0ccad25
children
rev   line source
robert@372 1 /*
robert@372 2 ____ _____ _ _
robert@372 3 | __ )| ____| | / \
robert@372 4 | _ \| _| | | / _ \
robert@372 5 | |_) | |___| |___ / ___ \
robert@372 6 |____/|_____|_____/_/ \_\.io
robert@372 7
robert@372 8 */
robert@372 9
andrewm@0 10 /*
andrewm@0 11 * render.cpp
andrewm@0 12 *
andrewm@0 13 * Created on: Oct 24, 2014
andrewm@0 14 * Author: parallels
andrewm@0 15 */
andrewm@0 16
robert@372 17 /**
robert@372 18 \example 1_basic_helloworld
robert@372 19
robert@372 20 Producing your first bleep!
robert@372 21 ---------------------------
robert@372 22
robert@372 23 This sketch is the hello world of embedded interactive audio. Better known as bleep, it
robert@372 24 produces a sine tone.
robert@372 25
robert@372 26 The frequency of the sine tone is determined by a global variable, `gFrequency`
robert@372 27 (line 12). The sine tone is produced by incrementing the phase of a sin function
robert@372 28 on every audio frame.
robert@372 29
robert@372 30 In render() you'll see a nested for loop structure. You'll see this in all Bela projects.
robert@372 31 The first for loop cycles through 'audioFrames', the second through 'audioChannels' (in this case left 0 and right 1).
robert@372 32 It is good to familiarise yourself with this structure as it's fundamental to producing sound with the system.
robert@372 33 */
andrewm@0 34
giuliomoro@301 35 #include <Bela.h>
andrewm@0 36 #include <cmath>
andrewm@0 37
andrewm@56 38 float gFrequency = 440.0;
andrewm@0 39 float gPhase;
andrewm@0 40 float gInverseSampleRate;
andrewm@0 41
andrewm@56 42 // setup() is called once before the audio rendering starts.
andrewm@0 43 // Use it to perform any initialisation and allocation which is dependent
andrewm@0 44 // on the period size or sample rate.
andrewm@0 45 //
andrewm@0 46 // userData holds an opaque pointer to a data structure that was passed
andrewm@0 47 // in from the call to initAudio().
andrewm@0 48 //
andrewm@0 49 // Return true on success; returning false halts the program.
andrewm@0 50
giuliomoro@301 51 bool setup(BelaContext *context, void *userData)
andrewm@0 52 {
andrewm@0 53 // Retrieve a parameter passed in from the initAudio() call
andrewm@56 54 if(userData != 0)
andrewm@56 55 gFrequency = *(float *)userData;
andrewm@0 56
andrewm@45 57 gInverseSampleRate = 1.0 / context->audioSampleRate;
andrewm@0 58 gPhase = 0.0;
andrewm@0 59
andrewm@0 60 return true;
andrewm@0 61 }
andrewm@0 62
andrewm@0 63 // render() is called regularly at the highest priority by the audio engine.
andrewm@0 64 // Input and output are given from the audio hardware and the other
andrewm@0 65 // ADCs and DACs (if available). If only audio is available, numMatrixFrames
andrewm@0 66 // will be 0.
andrewm@0 67
giuliomoro@301 68 void render(BelaContext *context, void *userData)
andrewm@0 69 {
andrewm@45 70 for(unsigned int n = 0; n < context->audioFrames; n++) {
andrewm@0 71 float out = 0.8f * sinf(gPhase);
andrewm@0 72 gPhase += 2.0 * M_PI * gFrequency * gInverseSampleRate;
andrewm@0 73 if(gPhase > 2.0 * M_PI)
andrewm@0 74 gPhase -= 2.0 * M_PI;
andrewm@0 75
giuliomoro@180 76 for(unsigned int channel = 0; channel < context->audioChannels; channel++) {
giuliomoro@180 77 // Two equivalent ways to write this code
giuliomoro@180 78
giuliomoro@180 79 // The long way, using the buffers directly:
giuliomoro@180 80 // context->audioOut[n * context->audioChannels + channel] = out;
giuliomoro@180 81
giuliomoro@180 82 // Or using the macros:
andrewm@308 83 audioWrite(context, n, channel, out);
giuliomoro@180 84 }
andrewm@0 85 }
andrewm@0 86 }
andrewm@0 87
andrewm@56 88 // cleanup() is called once at the end, after the audio has stopped.
andrewm@56 89 // Release any resources that were allocated in setup().
andrewm@0 90
giuliomoro@301 91 void cleanup(BelaContext *context, void *userData)
andrewm@0 92 {
andrewm@0 93
andrewm@0 94 }