annotate core/I2c_Codec.cpp @ 420:669855b8461b prerelease

update_board.sh now correctly resolves relative paths to the $IDE_FOLDER
author Giulio Moro <giuliomoro@yahoo.it>
date Thu, 16 Jun 2016 13:54:48 +0100
parents 869f5e703844
children 838a4a4a8580
rev   line source
andrewm@0 1 /*
andrewm@0 2 * I2c_Codec.cpp
andrewm@0 3 *
andrewm@0 4 * Handle writing the registers to the TLV320AIC310x
andrewm@0 5 * series audio codecs, used on the BeagleBone Audio Cape.
andrewm@0 6 * This code is designed to bypass the ALSA driver and
andrewm@0 7 * configure the codec directly in a sensible way. It
andrewm@0 8 * is complemented by code running on the PRU which uses
andrewm@0 9 * the McASP serial port to transfer audio data.
andrewm@0 10 *
andrewm@0 11 * Created on: May 25, 2014
andrewm@0 12 * Author: Andrew McPherson
andrewm@0 13 */
andrewm@0 14
andrewm@0 15 #include "../include/I2c_Codec.h"
andrewm@0 16
andrewm@0 17 I2c_Codec::I2c_Codec()
andrewm@0 18 : running(false), dacVolumeHalfDbs(0), adcVolumeHalfDbs(0), hpVolumeHalfDbs(0)
andrewm@0 19 {}
andrewm@0 20
andrewm@0 21 // This method initialises the audio codec to its default state
andrewm@0 22 int I2c_Codec::initCodec()
andrewm@0 23 {
andrewm@0 24 // Write the reset register of the codec
andrewm@0 25 if(writeRegister(0x01, 0x80)) // Software reset register
andrewm@0 26 {
andrewm@0 27 cout << "Failed to reset codec\n";
andrewm@0 28 return 1;
andrewm@0 29 }
andrewm@0 30
andrewm@0 31 // Wait for codec to process the reset (for safety)
andrewm@0 32 usleep(5000);
andrewm@0 33
andrewm@0 34 return 0;
andrewm@0 35 }
andrewm@0 36
andrewm@0 37 // Tell the codec to start generating audio
andrewm@0 38 // See the TLV320AIC3106 datasheet for full details of the registers
andrewm@0 39 // The dual_rate flag, when true, runs the codec at 88.2kHz; otherwise
andrewm@0 40 // it runs at 44.1kHz
andrewm@0 41 int I2c_Codec::startAudio(int dual_rate)
andrewm@0 42 {
giuliomoro@142 43 // see datasehet for TLV320AIC3104 from page 44
andrewm@0 44 if(writeRegister(0x02, 0x00)) // Codec sample rate register: fs_ref / 1
andrewm@0 45 return 1;
giuliomoro@145 46 // The sampling frequency is given as f_{S(ref)} = (PLLCLK_IN × K × R)/(2048 × P)
giuliomoro@145 47 // The master clock PLLCLK_IN is 12MHz
giuliomoro@145 48 // K can be varied in intervals of resolution of 0.0001 up to 63.9999
giuliomoro@145 49 // using P=8 and R=1 gives a resolution of 0.0732421875Hz ( 0.000166% at 44.1kHz)
giuliomoro@145 50 // to obtain Fs=44100 we need to have K=60.2112
giuliomoro@145 51
giuliomoro@145 52 if(setPllP(8))
giuliomoro@145 53 return 1;
giuliomoro@145 54 if(setPllR(1))
giuliomoro@145 55 return 1;
giuliomoro@145 56 if(setAudioSamplingRate(44100)) //this will automatically find and set K for the given P and R so that Fs=44100
giuliomoro@145 57 return 1;
giuliomoro@142 58 // if(writeRegister(0x03, 0x91)) // PLL register A: enable
giuliomoro@142 59 // return 1;
giuliomoro@134 60 // if(writeRegister(0x04, 0x1C)) // PLL register B
giuliomoro@134 61 // return 1;
giuliomoro@134 62 // if(writeRegister(0x05, 0x52)) // PLL register C
giuliomoro@134 63 // return 1;
giuliomoro@134 64 // if(writeRegister(0x06, 0x40)) // PLL register D
giuliomoro@134 65 // return 1;
giuliomoro@145 66 // if(writeRegister(0x0B, 0x01)) // Audio codec overflow flag register: PLL R = 1
giuliomoro@145 67 // return 1;
giuliomoro@145 68
giuliomoro@145 69 // if(setPllD(5264)) //7.5264 gives 44.1kHz nominal value with a 12MHz master clock
giuliomoro@145 70 // return 1;
giuliomoro@145 71 // if(setPllJ(7))
giuliomoro@145 72 // return 1;
andrewm@0 73 if(dual_rate) {
andrewm@0 74 if(writeRegister(0x07, 0xEA)) // Codec datapath register: 44.1kHz; dual rate; standard datapath
andrewm@0 75 return 1;
andrewm@0 76 }
andrewm@0 77 else {
andrewm@0 78 if(writeRegister(0x07, 0x8A)) // Codec datapath register: 44.1kHz; std rate; standard datapath
andrewm@0 79 return 1;
andrewm@0 80 }
andrewm@0 81 if(writeRegister(0x08, 0xC0)) // Audio serial control register A: BLCK, WCLK outputs
andrewm@0 82 return 1;
andrewm@0 83 if(writeRegister(0x09, 0x40)) // Audio serial control register B: DSP mode, word len 16 bits
andrewm@0 84 return 1;
andrewm@0 85 if(writeRegister(0x0A, 0x00)) // Audio serial control register C: 0 bit offset
andrewm@0 86 return 1;
andrewm@0 87 if(writeRegister(0x0C, 0x00)) // Digital filter register: disabled
andrewm@0 88 return 1;
andrewm@0 89 if(writeRegister(0x0D, 0x00)) // Headset / button press register A: disabled
andrewm@0 90 return 1;
andrewm@0 91 if(writeRegister(0x0E, 0x00)) // Headset / button press register B: disabled
andrewm@0 92 return 1;
giuliomoro@171 93 //TODO: why are the next four lines, if uncommented, executed AFTER this method has returned?
giuliomoro@171 94 // if(setPga(16, 0)) // Left ADC PGA gain control: not muted; 16dB
giuliomoro@171 95 // return 1;
giuliomoro@171 96 // if(setPga(16, 1)) // Right ADC PGA gain control: not muted; 16dB
giuliomoro@171 97 // return 1;
giuliomoro@169 98 // if(writeRegister(0x0F, 0b01000000)) // Left ADC PGA gain control: not muted; 0x20 = 16dB
giuliomoro@169 99 // return 1;
giuliomoro@169 100 // if(writeRegister(0x10, 0b0)) // Right ADC PGA gain control: not muted; 0x20 = 16dB
giuliomoro@169 101 // return 1;
andrewm@0 102 if(writeRegister(0x25, 0xC0)) // DAC power/driver register: DAC power on (left and right)
andrewm@0 103 return 1;
andrewm@0 104 if(writeRegister(0x26, 0x04)) // High power output driver register: Enable short circuit protection
andrewm@0 105 return 1;
andrewm@0 106 if(writeRegister(0x28, 0x02)) // High power output stage register: disable soft stepping
andrewm@0 107 return 1;
andrewm@0 108
andrewm@0 109 if(writeRegister(0x52, 0x80)) // DAC_L1 to LEFT_LOP volume control: routed, volume 0dB
andrewm@0 110 return 1;
andrewm@0 111 if(writeRegister(0x5C, 0x80)) // DAC_R1 to RIGHT_LOP volume control: routed, volume 0dB
andrewm@0 112 return 1;
andrewm@0 113
andrewm@0 114 if(writeHPVolumeRegisters()) // Send DAC to high-power outputs
andrewm@0 115 return 1;
andrewm@0 116
giuliomoro@142 117 if(writeRegister(0x66, 0x02)) // Clock generation control register: use MCLK, PLL N = 2
andrewm@0 118 return 1;
andrewm@0 119
andrewm@0 120 if(writeRegister(0x33, 0x0D)) // HPLOUT output level control: output level = 0dB, not muted, powered up
andrewm@0 121 return 1;
andrewm@0 122 if(writeRegister(0x41, 0x0D)) // HPROUT output level control: output level = 0dB, not muted, powered up
andrewm@0 123 return 1;
andrewm@0 124 if(writeRegister(0x56, 0x09)) // LEFT_LOP output level control: 0dB, not muted, powered up
andrewm@0 125 return 1;
andrewm@0 126 if(writeRegister(0x5D, 0x09)) // RIGHT_LOP output level control: 0dB, not muted, powered up
andrewm@0 127 return 1;
andrewm@0 128
andrewm@0 129 if(writeDACVolumeRegisters(false)) // Unmute and set volume
andrewm@0 130 return 1;
andrewm@0 131
andrewm@0 132 if(writeRegister(0x65, 0x00)) // GPIO control register B: disabled; codec uses PLLDIV_OUT
andrewm@0 133 return 1;
andrewm@0 134
andrewm@0 135 if(writeADCVolumeRegisters(false)) // Unmute and set ADC volume
andrewm@0 136 return 1;
andrewm@0 137
andrewm@0 138 running = true;
andrewm@0 139 return 0;
andrewm@0 140 }
andrewm@0 141
giuliomoro@97 142 //set the numerator multiplier for the PLL
giuliomoro@97 143 int I2c_Codec::setPllK(float k){
giuliomoro@97 144 short unsigned int j=(int)k;
giuliomoro@134 145 unsigned int d=(int)(0.5+(k-j)*10000); //fractional part, between 0 and 9999
giuliomoro@97 146 if(setPllJ(j)>0)
giuliomoro@97 147 return 1;
giuliomoro@97 148 if(setPllD(d)>0)
giuliomoro@97 149 return 2;
giuliomoro@97 150 return 0;
giuliomoro@97 151 }
giuliomoro@97 152
giuliomoro@97 153
giuliomoro@97 154 //set integer part of the numerator mutliplier of the PLL
giuliomoro@97 155 int I2c_Codec::setPllJ(short unsigned int j){
giuliomoro@97 156 if(j>=64 || j<1){
giuliomoro@97 157 return 1;
giuliomoro@97 158 }
giuliomoro@97 159 if(writeRegister(0x04, j<<2)){ // PLL register B: j<<2
giuliomoro@97 160 printf("I2C error while writing PLL j: %d", j);
giuliomoro@97 161 return 1;
giuliomoro@97 162 }
giuliomoro@134 163 pllJ=j;
giuliomoro@97 164 return 0;
giuliomoro@97 165 }
giuliomoro@97 166
giuliomoro@97 167 //set fractional part(between 0 and 9999) of the numerator mutliplier of the PLL
giuliomoro@97 168 int I2c_Codec::setPllD(unsigned int d){
giuliomoro@97 169 if(d<0 || d>9999)
giuliomoro@97 170 return 1;
giuliomoro@97 171 if(writeRegister(0x05, (d>>6)&255)){ // PLL register C: part 1 : 8 most significant bytes of a 14bit integer
giuliomoro@97 172 printf("I2C error while writing PLL d part 1 : %d", d);
giuliomoro@97 173 return 1;
giuliomoro@97 174 }
giuliomoro@97 175 if(writeRegister(0x06, (d<<2)&255)){ // PLL register D: D=5264, part 2
giuliomoro@97 176 printf("I2C error while writing PLL d part 2 : %d", d);
giuliomoro@97 177 return 1;
giuliomoro@97 178 }
giuliomoro@134 179 pllD=d;
giuliomoro@97 180 return 0;
giuliomoro@97 181 }
giuliomoro@134 182
giuliomoro@142 183 //set integer part of the numerator mutliplier of the PLL
giuliomoro@142 184 //
giuliomoro@142 185 int I2c_Codec::setPllP(short unsigned int p){
giuliomoro@142 186 if(p > 8 || p < 1){
giuliomoro@142 187 return 1;
giuliomoro@142 188 }
giuliomoro@142 189 short unsigned int bits = 0;
giuliomoro@142 190 bits |= 1 << 7; //this means PLL enabled
giuliomoro@142 191 bits |= 0b0010 << 3; // this is the reset value for Q, which is anyhow unused when PLL is active
giuliomoro@142 192 if (p == 8) // 8 is a special value: PLL P Value 000: P = 8
giuliomoro@142 193 bits = bits | 0;
giuliomoro@142 194 else
giuliomoro@142 195 bits = bits | p; // other values are written with their binary representation.
giuliomoro@142 196 if(writeRegister(0x03, bits)){ // PLL register B: j<<2
giuliomoro@142 197 printf("I2C error while writing PLL p: %d", p);
giuliomoro@142 198 return 1;
giuliomoro@142 199 }
giuliomoro@142 200 pllP = p;
giuliomoro@142 201 return 0;
giuliomoro@142 202 }
giuliomoro@142 203 int I2c_Codec::setPllR(unsigned int r){
giuliomoro@142 204 if(r > 16){ //value out of range
giuliomoro@142 205 return 1;
giuliomoro@142 206 }
giuliomoro@142 207 unsigned int bits = 0;
giuliomoro@142 208 //bits D7-D4 are for ADC and DAC overflow flags and are read only
giuliomoro@142 209 if(r == 16) // 16 is a special value: PLL R Value 0000: R = 16
giuliomoro@142 210 bits |= 0;
giuliomoro@142 211 else
giuliomoro@142 212 bits |= r; // other values are written with their binary representation.
giuliomoro@142 213 if(writeRegister(0x0B, bits)){ // PLL register B: j<<2
giuliomoro@142 214 printf("I2C error while writing PLL r: %d", r);
giuliomoro@142 215 return 1;
giuliomoro@142 216 }
giuliomoro@142 217 pllR = r;
giuliomoro@142 218 return 0;
giuliomoro@142 219 }
giuliomoro@134 220 int I2c_Codec::setAudioSamplingRate(float newSamplingRate){
giuliomoro@134 221 long int PLLCLK_IN=12000000;
giuliomoro@134 222 // f_{S(ref)} = (PLLCLK_IN × K × R)/(2048 × P)
giuliomoro@134 223 float k = ((double)(newSamplingRate * pllP * 2048.0f/(float)pllR)) / PLLCLK_IN ;
giuliomoro@134 224 return (setPllK(k));
giuliomoro@134 225 }
giuliomoro@134 226
giuliomoro@169 227
giuliomoro@134 228 short unsigned int I2c_Codec::getPllJ(){
giuliomoro@134 229 return pllJ;
giuliomoro@134 230 }
giuliomoro@134 231 unsigned int I2c_Codec::getPllD(){
giuliomoro@134 232 return pllD;
giuliomoro@134 233 }
giuliomoro@142 234 unsigned int I2c_Codec::getPllR(){
giuliomoro@142 235 return pllR;
giuliomoro@142 236 }
giuliomoro@142 237 unsigned int I2c_Codec::getPllP(){
giuliomoro@142 238 return pllP;
giuliomoro@142 239 }
giuliomoro@134 240 float I2c_Codec::getPllK(){
giuliomoro@134 241 float j=getPllJ();
giuliomoro@134 242 float d=getPllD();
giuliomoro@134 243 float k=j+d/10000.0f;
giuliomoro@134 244 return k;
giuliomoro@134 245 }
giuliomoro@134 246
giuliomoro@134 247 float I2c_Codec::getAudioSamplingRate(){
giuliomoro@134 248 long int PLLCLK_IN=12000000;
giuliomoro@134 249 // f_{S(ref)} = (PLLCLK_IN × K × R)/(2048 × P)
giuliomoro@182 250 float fs = (PLLCLK_IN/2048.0f) * getPllK()*getPllR()/(float)getPllP();
giuliomoro@134 251 return fs;
giuliomoro@134 252 }
giuliomoro@169 253
giuliomoro@169 254 int I2c_Codec::setPga(float newGain, unsigned short int channel){
giuliomoro@169 255 unsigned short int reg;
giuliomoro@169 256 if(channel == 0)
giuliomoro@169 257 reg = 0x0F;
giuliomoro@169 258 else if(channel == 1)
giuliomoro@169 259 reg = 0x10;
giuliomoro@169 260 else
giuliomoro@169 261 return 1; // error, wrong channel
giuliomoro@169 262 if(newGain > 59.5)
giuliomoro@169 263 return 2; // error, gain out of range
giuliomoro@169 264 unsigned short int value;
giuliomoro@169 265 if(newGain < 0)
giuliomoro@169 266 value = 0b10000000; // PGA is muted
giuliomoro@169 267 else {
giuliomoro@169 268 // gain is adjustable from 0 to 59.5dB in steps of 0.5dB between 0x0 and 0x7f.
giuliomoro@169 269 // Values between 0b01110111 and 0b01111111 are clipped to 59.5dB
giuliomoro@169 270 value = (int)(newGain * 2 + 0.5) & 0x7f;
giuliomoro@169 271 }
giuliomoro@172 272 return writeRegister(reg, value);
giuliomoro@169 273 }
giuliomoro@169 274
andrewm@0 275 // Set the volume of the DAC output
andrewm@0 276 int I2c_Codec::setDACVolume(int halfDbSteps)
andrewm@0 277 {
andrewm@0 278 dacVolumeHalfDbs = halfDbSteps;
andrewm@0 279 if(running)
andrewm@0 280 return writeDACVolumeRegisters(false);
andrewm@0 281
andrewm@0 282 return 0;
andrewm@0 283 }
andrewm@0 284
giuliomoro@169 285 // Set the volume of the ADC input
andrewm@0 286 int I2c_Codec::setADCVolume(int halfDbSteps)
andrewm@0 287 {
andrewm@0 288 adcVolumeHalfDbs = halfDbSteps;
andrewm@0 289 if(running)
andrewm@0 290 return writeADCVolumeRegisters(false);
andrewm@0 291
andrewm@0 292 return 0;
andrewm@0 293 }
andrewm@0 294
andrewm@0 295 // Update the DAC volume control registers
andrewm@0 296 int I2c_Codec::writeDACVolumeRegisters(bool mute)
andrewm@0 297 {
andrewm@0 298 int volumeBits = 0;
andrewm@0 299
andrewm@0 300 if(dacVolumeHalfDbs < 0) { // Volume is specified in half-dBs with 0 as full scale
andrewm@0 301 volumeBits = -dacVolumeHalfDbs;
andrewm@0 302 if(volumeBits > 127)
andrewm@0 303 volumeBits = 127;
andrewm@0 304 }
andrewm@0 305
andrewm@0 306 if(mute) {
andrewm@0 307 if(writeRegister(0x2B, volumeBits | 0x80)) // Left DAC volume control: muted
andrewm@0 308 return 1;
andrewm@0 309 if(writeRegister(0x2C, volumeBits | 0x80)) // Right DAC volume control: muted
andrewm@0 310 return 1;
andrewm@0 311 }
andrewm@0 312 else {
andrewm@0 313 if(writeRegister(0x2B, volumeBits)) // Left DAC volume control: not muted
andrewm@0 314 return 1;
andrewm@0 315 if(writeRegister(0x2C, volumeBits)) // Right DAC volume control: not muted
andrewm@0 316 return 1;
andrewm@0 317 }
andrewm@0 318
andrewm@0 319 return 0;
andrewm@0 320 }
andrewm@0 321
andrewm@0 322 // Update the ADC volume control registers
andrewm@0 323 int I2c_Codec::writeADCVolumeRegisters(bool mute)
andrewm@0 324 {
andrewm@0 325 int volumeBits = 0;
andrewm@0 326
andrewm@0 327 // Volume is specified in half-dBs with 0 as full scale
andrewm@0 328 // The codec uses 1.5dB steps so we divide this number by 3
andrewm@0 329 if(adcVolumeHalfDbs < 0) {
andrewm@0 330 volumeBits = -adcVolumeHalfDbs / 3;
andrewm@0 331 if(volumeBits > 8)
andrewm@0 332 volumeBits = 8;
andrewm@0 333 }
andrewm@0 334
andrewm@0 335 if(mute) {
andrewm@0 336 if(writeRegister(0x13, 0x00)) // Line1L to Left ADC control register: power down
andrewm@0 337 return 1;
andrewm@0 338 if(writeRegister(0x16, 0x00)) // Line1R to Right ADC control register: power down
andrewm@0 339 return 1;
andrewm@0 340 }
andrewm@0 341 else {
andrewm@0 342 if(writeRegister(0x13, 0x7C)) // Line1L disabled; left ADC powered up with soft step
andrewm@0 343 return 1;
andrewm@0 344 if(writeRegister(0x16, 0x7C)) // Line1R disabled; right ADC powered up with soft step
andrewm@0 345 return 1;
andrewm@0 346 if(writeRegister(0x11, (volumeBits << 4) | 0x0F)) // Line2L connected to left ADC
andrewm@0 347 return 1;
andrewm@0 348 if(writeRegister(0x12, volumeBits | 0xF0)) // Line2R connected to right ADC
andrewm@0 349 return 1;
andrewm@0 350 }
andrewm@0 351
andrewm@0 352 return 0;
andrewm@0 353 }
andrewm@0 354
andrewm@0 355 // Set the volume of the headphone output
andrewm@0 356 int I2c_Codec::setHPVolume(int halfDbSteps)
andrewm@0 357 {
andrewm@0 358 hpVolumeHalfDbs = halfDbSteps;
andrewm@0 359 if(running)
andrewm@0 360 return writeHPVolumeRegisters();
andrewm@0 361
andrewm@0 362 return 0;
andrewm@0 363 }
andrewm@0 364
andrewm@0 365
andrewm@0 366 // Update the headphone volume control registers
andrewm@0 367 int I2c_Codec::writeHPVolumeRegisters()
andrewm@0 368 {
andrewm@0 369 int volumeBits = 0;
andrewm@0 370
andrewm@0 371 if(hpVolumeHalfDbs < 0) { // Volume is specified in half-dBs with 0 as full scale
andrewm@0 372 volumeBits = -hpVolumeHalfDbs;
andrewm@0 373 if(volumeBits > 127)
andrewm@0 374 volumeBits = 127;
andrewm@0 375 }
andrewm@0 376
andrewm@0 377 if(writeRegister(0x2F, volumeBits | 0x80)) // DAC_L1 to HPLOUT register: route to HPLOUT, volume 0dB
andrewm@0 378 return 1;
andrewm@0 379 if(writeRegister(0x40, volumeBits | 0x80)) // DAC_R1 to HPROUT register: route to HPROUT, volume 0dB
andrewm@0 380 return 1;
andrewm@0 381
andrewm@0 382 return 0;
andrewm@0 383 }
andrewm@0 384
andrewm@0 385 // This tells the codec to stop generating audio and mute the outputs
andrewm@0 386 int I2c_Codec::stopAudio()
andrewm@0 387 {
andrewm@0 388 if(writeDACVolumeRegisters(true)) // Mute the DACs
andrewm@0 389 return 1;
andrewm@0 390 if(writeADCVolumeRegisters(true)) // Mute the ADCs
andrewm@0 391 return 1;
andrewm@0 392
andrewm@0 393 usleep(10000);
andrewm@0 394
andrewm@0 395 if(writeRegister(0x33, 0x0C)) // HPLOUT output level register: muted
andrewm@0 396 return 1;
andrewm@0 397 if(writeRegister(0x41, 0x0C)) // HPROUT output level register: muted
andrewm@0 398 return 1;
andrewm@0 399 if(writeRegister(0x56, 0x08)) // LEFT_LOP output level control: muted
andrewm@0 400 return 1;
andrewm@0 401 if(writeRegister(0x5D, 0x08)) // RIGHT_LOP output level control: muted
andrewm@0 402 return 1;
andrewm@0 403 if(writeRegister(0x25, 0x00)) // DAC power/driver register: power off
andrewm@0 404 return 1;
andrewm@0 405 if(writeRegister(0x03, 0x11)) // PLL register A: disable
andrewm@0 406 return 1;
andrewm@0 407 if(writeRegister(0x01, 0x80)) // Reset codec to defaults
andrewm@0 408 return 1;
andrewm@0 409
andrewm@0 410 running = false;
andrewm@0 411 return 0;
andrewm@0 412 }
andrewm@0 413
andrewm@0 414 // Write a specific register on the codec
andrewm@0 415 int I2c_Codec::writeRegister(unsigned int reg, unsigned int value)
andrewm@0 416 {
giuliomoro@216 417 char buf[2] = { static_cast<char>(reg & 0xFF), static_cast<char>(value & 0xFF) };
andrewm@0 418
andrewm@0 419 if(write(i2C_file, buf, 2) != 2)
andrewm@0 420 {
andrewm@0 421 cout << "Failed to write register " << reg << " on codec\n";
andrewm@0 422 return 1;
andrewm@0 423 }
andrewm@0 424
andrewm@0 425 return 0;
andrewm@0 426 }
andrewm@0 427
andrewm@0 428
andrewm@0 429 int I2c_Codec::readI2C()
andrewm@0 430 {
andrewm@0 431 // Nothing to do here, we only write the registers
andrewm@0 432 return 0;
andrewm@0 433 }
andrewm@0 434
andrewm@0 435
andrewm@0 436 I2c_Codec::~I2c_Codec()
andrewm@0 437 {
andrewm@0 438 if(running)
andrewm@0 439 stopAudio();
andrewm@0 440 }
andrewm@0 441