annotate pru_rtaudio.p @ 67:472e892c6e41

Merge newapi into default
author Andrew McPherson <a.mcpherson@qmul.ac.uk>
date Fri, 17 Jul 2015 15:28:18 +0100
parents 0d80ff9e2227 579c86316008
children b697e82ebb25
rev   line source
andrewm@0 1 .origin 0
andrewm@0 2 .entrypoint START
andrewm@0 3
andrewm@0 4 #define DBOX_CAPE // Define this to use new cape hardware
andrewm@0 5
andrewm@0 6 #define CLOCK_BASE 0x44E00000
andrewm@0 7 #define CLOCK_SPI0 0x4C
andrewm@0 8 #define CLOCK_SPI1 0x50
andrewm@0 9 #define CLOCK_L4LS 0x60
andrewm@0 10
andrewm@0 11 #define SPI0_BASE 0x48030100
andrewm@0 12 #define SPI1_BASE 0x481A0100
andrewm@0 13 #define SPI_BASE SPI0_BASE
andrewm@0 14
andrewm@0 15 #define SPI_SYSCONFIG 0x10
andrewm@0 16 #define SPI_SYSSTATUS 0x14
andrewm@0 17 #define SPI_MODULCTRL 0x28
andrewm@0 18 #define SPI_CH0CONF 0x2C
andrewm@0 19 #define SPI_CH0STAT 0x30
andrewm@0 20 #define SPI_CH0CTRL 0x34
andrewm@0 21 #define SPI_CH0TX 0x38
andrewm@0 22 #define SPI_CH0RX 0x3C
andrewm@0 23 #define SPI_CH1CONF 0x40
andrewm@0 24 #define SPI_CH1STAT 0x44
andrewm@0 25 #define SPI_CH1CTRL 0x48
andrewm@0 26 #define SPI_CH1TX 0x4C
andrewm@0 27 #define SPI_CH1RX 0x50
andrewm@0 28
andrewm@0 29 #define GPIO0 0x44E07000
andrewm@0 30 #define GPIO1 0x4804C000
andrewm@0 31 #define GPIO_CLEARDATAOUT 0x190
andrewm@0 32 #define GPIO_SETDATAOUT 0x194
andrewm@0 33
andrewm@45 34 #define PRU0_ARM_INTERRUPT 19 // Interrupt signalling we're done
andrewm@45 35 #define PRU1_ARM_INTERRUPT 20 // Interrupt signalling a block is ready
andrewm@0 36
andrewm@0 37 #define C_ADC_DAC_MEM C24 // PRU0 mem
andrewm@0 38 #ifdef DBOX_CAPE
andrewm@0 39 #define DAC_GPIO GPIO0
andrewm@0 40 #define DAC_CS_PIN (1<<5) // GPIO0:5 = P9 pin 17
andrewm@0 41 #else
andrewm@0 42 #define DAC_GPIO GPIO1
andrewm@0 43 #define DAC_CS_PIN (1<<16) // GPIO1:16 = P9 pin 15
andrewm@0 44 #endif
andrewm@0 45 #define DAC_TRM 0 // SPI transmit and receive
andrewm@0 46 #define DAC_WL 32 // Word length
andrewm@0 47 #define DAC_CLK_MODE 1 // SPI mode
andrewm@0 48 #define DAC_CLK_DIV 1 // Clock divider (48MHz / 2^n)
andrewm@0 49 #define DAC_DPE 1 // d0 = receive, d1 = transmit
andrewm@0 50
andrewm@0 51 #define AD5668_COMMAND_OFFSET 24
andrewm@0 52 #define AD5668_ADDRESS_OFFSET 20
andrewm@0 53 #define AD5668_DATA_OFFSET 4
andrewm@0 54 #define AD5668_REF_OFFSET 0
andrewm@0 55
andrewm@0 56 #ifdef DBOX_CAPE
andrewm@0 57 #define ADC_GPIO GPIO1
andrewm@0 58 #define ADC_CS_PIN (1<<16) // GPIO1:16 = P9 pin 15
andrewm@0 59 #else
andrewm@0 60 #define ADC_GPIO GPIO1
andrewm@0 61 #define ADC_CS_PIN (1<<17) // GPIO1:17 = P9 pin 23
andrewm@0 62 #endif
andrewm@0 63 #define ADC_TRM 0 // SPI transmit and receive
andrewm@0 64 #define ADC_WL 16 // Word length
andrewm@0 65 #define ADC_CLK_MODE 0 // SPI mode
andrewm@0 66 #define ADC_CLK_DIV 1 // Clock divider (48MHz / 2^n)
andrewm@0 67 #define ADC_DPE 1 // d0 = receive, d1 = transmit
andrewm@0 68
andrewm@0 69 #define AD7699_CFG_MASK 0xF120 // Mask for config update, unipolar, full BW
andrewm@0 70 #define AD7699_CHANNEL_OFFSET 9 // 7 bits offset of a 14-bit left-justified word
andrewm@0 71 #define AD7699_SEQ_OFFSET 3 // sequencer (0 = disable, 3 = scan all)
andrewm@0 72
andrewm@0 73 #define SHARED_COMM_MEM_BASE 0x00010000 // Location where comm flags are written
andrewm@0 74 #define COMM_SHOULD_STOP 0 // Set to be nonzero when loop should stop
andrewm@0 75 #define COMM_CURRENT_BUFFER 4 // Which buffer we are on
andrewm@0 76 #define COMM_BUFFER_FRAMES 8 // How many frames per buffer
andrewm@0 77 #define COMM_SHOULD_SYNC 12 // Whether to synchronise to an external clock
andrewm@0 78 #define COMM_SYNC_ADDRESS 16 // Which memory address to find the GPIO on
andrewm@0 79 #define COMM_SYNC_PIN_MASK 20 // Which pin to read for the sync
andrewm@0 80 #define COMM_LED_ADDRESS 24 // Which memory address to find the status LED on
andrewm@0 81 #define COMM_LED_PIN_MASK 28 // Which pin to write to change LED
andrewm@0 82 #define COMM_FRAME_COUNT 32 // How many frames have elapse since beginning
andrewm@0 83 #define COMM_USE_SPI 36 // Whether or not to use SPI ADC and DAC
andrewm@12 84 #define COMM_NUM_CHANNELS 40 // Low 2 bits indicate 8 [0x3], 4 [0x1] or 2 [0x0] channels
giuliomoro@19 85 #define COMM_USE_DIGITAL 44 // Whether or not to use DIGITAL
giuliomoro@16 86
andrewm@0 87 #define MCASP0_BASE 0x48038000
andrewm@0 88 #define MCASP1_BASE 0x4803C000
andrewm@0 89
andrewm@0 90 #define MCASP_PWRIDLESYSCONFIG 0x04
andrewm@0 91 #define MCASP_PFUNC 0x10
andrewm@0 92 #define MCASP_PDIR 0x14
andrewm@0 93 #define MCASP_PDOUT 0x18
andrewm@0 94 #define MCASP_PDSET 0x1C
andrewm@0 95 #define MCASP_PDIN 0x1C
andrewm@0 96 #define MCASP_PDCLR 0x20
andrewm@0 97 #define MCASP_GBLCTL 0x44
andrewm@0 98 #define MCASP_AMUTE 0x48
andrewm@0 99 #define MCASP_DLBCTL 0x4C
andrewm@0 100 #define MCASP_DITCTL 0x50
andrewm@0 101 #define MCASP_RGBLCTL 0x60
andrewm@0 102 #define MCASP_RMASK 0x64
andrewm@0 103 #define MCASP_RFMT 0x68
andrewm@0 104 #define MCASP_AFSRCTL 0x6C
andrewm@0 105 #define MCASP_ACLKRCTL 0x70
andrewm@0 106 #define MCASP_AHCLKRCTL 0x74
andrewm@0 107 #define MCASP_RTDM 0x78
andrewm@0 108 #define MCASP_RINTCTL 0x7C
andrewm@0 109 #define MCASP_RSTAT 0x80
andrewm@0 110 #define MCASP_RSLOT 0x84
andrewm@0 111 #define MCASP_RCLKCHK 0x88
andrewm@0 112 #define MCASP_REVTCTL 0x8C
andrewm@0 113 #define MCASP_XGBLCTL 0xA0
andrewm@0 114 #define MCASP_XMASK 0xA4
andrewm@0 115 #define MCASP_XFMT 0xA8
andrewm@0 116 #define MCASP_AFSXCTL 0xAC
andrewm@0 117 #define MCASP_ACLKXCTL 0xB0
andrewm@0 118 #define MCASP_AHCLKXCTL 0xB4
andrewm@0 119 #define MCASP_XTDM 0xB8
andrewm@0 120 #define MCASP_XINTCTL 0xBC
andrewm@0 121 #define MCASP_XSTAT 0xC0
andrewm@0 122 #define MCASP_XSLOT 0xC4
andrewm@0 123 #define MCASP_XCLKCHK 0xC8
andrewm@0 124 #define MCASP_XEVTCTL 0xCC
andrewm@0 125 #define MCASP_SRCTL0 0x180
andrewm@0 126 #define MCASP_SRCTL1 0x184
andrewm@0 127 #define MCASP_SRCTL2 0x188
andrewm@0 128 #define MCASP_SRCTL3 0x18C
andrewm@0 129 #define MCASP_SRCTL4 0x190
andrewm@0 130 #define MCASP_SRCTL5 0x194
andrewm@0 131 #define MCASP_XBUF0 0x200
andrewm@0 132 #define MCASP_XBUF1 0x204
andrewm@0 133 #define MCASP_XBUF2 0x208
andrewm@0 134 #define MCASP_XBUF3 0x20C
andrewm@0 135 #define MCASP_XBUF4 0x210
andrewm@0 136 #define MCASP_XBUF5 0x214
andrewm@0 137 #define MCASP_RBUF0 0x280
andrewm@0 138 #define MCASP_RBUF1 0x284
andrewm@0 139 #define MCASP_RBUF2 0x288
andrewm@0 140 #define MCASP_RBUF3 0x28C
andrewm@0 141 #define MCASP_RBUF4 0x290
andrewm@0 142 #define MCASP_RBUF5 0x294
andrewm@0 143 #define MCASP_WFIFOCTL 0x1000
andrewm@0 144 #define MCASP_WFIFOSTS 0x1004
andrewm@0 145 #define MCASP_RFIFOCTL 0x1008
andrewm@0 146 #define MCASP_RFIFOSTS 0x100C
andrewm@0 147
andrewm@0 148 #define MCASP_XSTAT_XDATA_BIT 5 // Bit to test for transmit ready
andrewm@0 149 #define MCASP_RSTAT_RDATA_BIT 5 // Bit to test for receive ready
andrewm@0 150
andrewm@0 151 // Constants used for this particular audio setup
andrewm@0 152 #define MCASP_BASE MCASP0_BASE
andrewm@0 153 #ifdef DBOX_CAPE
andrewm@0 154 #define MCASP_SRCTL_X MCASP_SRCTL2 // Ser. 2 is transmitter
andrewm@0 155 #define MCASP_SRCTL_R MCASP_SRCTL0 // Ser. 0 is receiver
andrewm@0 156 #define MCASP_XBUF MCASP_XBUF2
andrewm@0 157 #define MCASP_RBUF MCASP_RBUF0
andrewm@0 158 #else
andrewm@0 159 #define MCASP_SRCTL_X MCASP_SRCTL3 // Ser. 3 is transmitter
andrewm@0 160 #define MCASP_SRCTL_R MCASP_SRCTL2 // Ser. 2 is receiver
andrewm@0 161 #define MCASP_XBUF MCASP_XBUF3
andrewm@0 162 #define MCASP_RBUF MCASP_RBUF2
andrewm@0 163 #endif
andrewm@0 164
andrewm@0 165 #define MCASP_PIN_AFSX (1 << 28)
andrewm@0 166 #define MCASP_PIN_AHCLKX (1 << 27)
andrewm@0 167 #define MCASP_PIN_ACLKX (1 << 26)
andrewm@0 168 #define MCASP_PIN_AMUTE (1 << 25) // Also, 0 to 3 are XFR0 to XFR3
andrewm@0 169
andrewm@0 170 #ifdef DBOX_CAPE
andrewm@0 171 #define MCASP_OUTPUT_PINS MCASP_PIN_AHCLKX | (1 << 2) // AHCLKX and AXR2 outputs
andrewm@0 172 #else
andrewm@0 173 #define MCASP_OUTPUT_PINS (1 << 3) // Which pins are outputs
andrewm@0 174 #endif
andrewm@0 175
andrewm@0 176 #define MCASP_DATA_MASK 0xFFFF // 16 bit data
andrewm@0 177 #define MCASP_DATA_FORMAT 0x807C // MSB first, 0 bit delay, 16 bits, CFG bus, ROR 16bits
andrewm@0 178
andrewm@12 179 #define C_MCASP_MEM C28 // Shared PRU mem
andrewm@0 180
andrewm@0 181 // Flags for the flags register
andrewm@0 182 #define FLAG_BIT_BUFFER1 0
andrewm@0 183 #define FLAG_BIT_USE_SPI 1
andrewm@12 184 #define FLAG_BIT_MCASP_HWORD 2 // Whether we are on the high word for McASP transmission
giuliomoro@19 185 #define FLAG_BIT_USE_DIGITAL 3
andrewm@0 186 // Registers used throughout
andrewm@0 187
andrewm@0 188 // r1, r2, r3 are used for temporary storage
giuliomoro@19 189 #define MEM_DIGITAL_BASE 0x11000 //Base address for DIGITAL : Shared RAM + 0x400
giuliomoro@19 190 #define MEM_DIGITAL_BUFFER1_OFFSET 0x400 //Start pointer to DIGITAL_BUFFER1, which is 256 words after.
giuliomoro@16 191 // 256 is the maximum number of frames allowed
giuliomoro@16 192
giuliomoro@40 193 #define reg_digital_current r6 // Pointer to current storage location of DIGITAL
andrewm@12 194 #define reg_num_channels r9 // Number of SPI ADC/DAC channels to use
andrewm@0 195 #define reg_frame_current r10 // Current frame count in SPI ADC/DAC transfer
andrewm@0 196 #define reg_frame_total r11 // Total frame count for SPI ADC/DAC
andrewm@0 197 #define reg_dac_data r12 // Current dword for SPI DAC
andrewm@0 198 #define reg_adc_data r13 // Current dword for SPI ADC
andrewm@0 199 #define reg_mcasp_dac_data r14 // Current dword for McASP DAC
andrewm@0 200 #define reg_mcasp_adc_data r15 // Current dword for McASP ADC
andrewm@0 201 #define reg_dac_buf0 r16 // Start pointer to SPI DAC buffer 0
andrewm@0 202 #define reg_dac_buf1 r17 // Start pointer to SPI DAC buffer 1
andrewm@0 203 #define reg_dac_current r18 // Pointer to current storage location of SPI DAC
andrewm@0 204 #define reg_adc_current r19 // Pointer to current storage location of SPI ADC
andrewm@0 205 #define reg_mcasp_buf0 r20 // Start pointer to McASP DAC buffer 0
andrewm@0 206 #define reg_mcasp_buf1 r21 // Start pointer to McASP DAC buffer 1
andrewm@0 207 #define reg_mcasp_dac_current r22 // Pointer to current storage location of McASP DAC
andrewm@0 208 #define reg_mcasp_adc_current r23 // Pointer to current storage location of McASP ADC
andrewm@0 209 #define reg_flags r24 // Buffer ID (0 and 1) and other flags
andrewm@0 210 #define reg_comm_addr r25 // Memory address for communicating with ARM
andrewm@0 211 #define reg_spi_addr r26 // Base address for SPI
andrewm@0 212 // r27, r28 used in macros
andrewm@0 213 #define reg_mcasp_addr r29 // Base address for McASP
andrewm@0 214
giuliomoro@16 215 //0 P8_07 36 0x890/090 66 gpio2[2]
giuliomoro@16 216 //1 P8_08 37 0x894/094 67 gpio2[3]
giuliomoro@16 217 //2 P8_09 39 0x89c/09c 69 gpio2[5]
giuliomoro@16 218 //3 P8_10 38 0x898/098 68 gpio2[4]
giuliomoro@16 219 //4 P8_11 13 0x834/034 45 gpio1[13]
giuliomoro@16 220 //5 P8_12 12 0x830/030 44 gpio1[12]
giuliomoro@16 221 //6 P9_12 30 0x878/078 60 gpio1[28]
giuliomoro@16 222 //7 P9_14 18 0x848/048 50 gpio1[18]
giuliomoro@16 223 //8 P8_15 15 0x83c/03c 47 gpio1[15]
giuliomoro@16 224 //9 P8_16 14 0x838/038 46 gpio1[14]
giuliomoro@16 225 //10 P9_16 19 0x84c/04c 51 gpio1[19]
giuliomoro@16 226 //11 P8_18 35 0x88c/08c 65 gpio2[1]
giuliomoro@16 227 //12 P8_27 56 0x8e0/0e0 86 gpio2[22]
giuliomoro@16 228 //13 P8_28 58 0x8e8/0e8 88 gpio2[24]
giuliomoro@16 229 //14 P8_29 57 0x8e4/0e4 87 gpio2[23]
giuliomoro@16 230 //15 P8_30 59 0x8ec/0ec 89 gpio2[25]
giuliomoro@16 231
giuliomoro@16 232 //generic GPIOs constants
giuliomoro@16 233 //#define GPIO1 0x4804c000
giuliomoro@16 234 #define GPIO2 0x481ac000
giuliomoro@16 235 //#define GPIO_CLEARDATAOUT 0x190 //SETDATAOUT is CLEARDATAOUT+4
giuliomoro@16 236 #define GPIO_OE 0x134
giuliomoro@16 237 #define GPIO_DATAIN 0x138
giuliomoro@16 238
giuliomoro@16 239 .macro READ_GPIO_BITS
giuliomoro@19 240 .mparam gpio_data, gpio_num_bit, digital_bit, digital
giuliomoro@19 241 QBBC DONE, digital, digital_bit //if the pin is set as an output, nothing to do here
giuliomoro@16 242 QBBC CLEAR, gpio_data, gpio_num_bit
giuliomoro@19 243 SET digital, digital_bit+16
giuliomoro@16 244 QBA DONE
giuliomoro@16 245 CLEAR:
giuliomoro@19 246 CLR digital, digital_bit+16
giuliomoro@16 247 QBA DONE
giuliomoro@16 248 DONE:
giuliomoro@16 249 .endm
giuliomoro@16 250
giuliomoro@16 251 .macro SET_GPIO_BITS
giuliomoro@19 252 .mparam gpio_oe, gpio_setdataout, gpio_cleardataout, gpio_num_bit, digital_bit, digital //sets the bits in GPIO_OE, GPIO_SETDATAOUT and GPIO_CLEARDATAOUT
giuliomoro@16 253 //Remember that the GPIO_OE Output data enable register behaves as follows for each bit:
giuliomoro@16 254 //0 = The corresponding GPIO pin is configured as an output.
giuliomoro@16 255 //1 = The corresponding GPIO pin is configured as an input.
giuliomoro@19 256 QBBS SETINPUT, digital, digital_bit
giuliomoro@16 257 CLR gpio_oe, gpio_num_bit //if it is an output, configure pin as output
giuliomoro@19 258 QBBC CLEARDATAOUT, digital, digital_bit+16 // check the output value. If it is 0, branch
giuliomoro@16 259 SET gpio_setdataout, gpio_num_bit //if it is 1, set output to high
giuliomoro@16 260 QBA DONE
giuliomoro@16 261 CLEARDATAOUT:
giuliomoro@16 262 SET gpio_cleardataout, gpio_num_bit // set output to low
giuliomoro@16 263 QBA DONE
giuliomoro@16 264 SETINPUT: //if it is an input, set the relevant bit
giuliomoro@16 265 SET gpio_oe, gpio_num_bit
giuliomoro@16 266 QBA DONE
giuliomoro@16 267 DONE:
giuliomoro@16 268 .endm
giuliomoro@16 269
giuliomoro@16 270 QBA START // when first starting, go to START, skipping this section.
giuliomoro@16 271
giuliomoro@19 272 DIGITAL:
giuliomoro@39 273 //IMPORTANT: do NOT use r28 in this macro, as it contains the return address for JAL
giuliomoro@39 274 //r27 is now the input word passed in render(), one word per frame
giuliomoro@16 275 //[31:16]: data(1=high, 0=low), [15:0]: direction (0=output, 1=input) )
giuliomoro@39 276
giuliomoro@39 277
giuliomoro@16 278 //Preparing the gpio_oe, gpio_cleardataout and gpio_setdataout for each module
giuliomoro@39 279 //r2 will hold GPIO1_OE
giuliomoro@39 280 //load current status of GPIO_OE in r2
giuliomoro@39 281 MOV r2, GPIO1 | GPIO_OE
giuliomoro@26 282 //it takes 190ns to go through the next instruction
giuliomoro@39 283 LBBO r2, r2, 0, 4
giuliomoro@16 284 //GPIO1-start
giuliomoro@16 285 //process oe and datain and prepare dataout for GPIO1
giuliomoro@39 286 //r7 will contain GPIO1_CLEARDATAOUT
giuliomoro@39 287 //r8 will contain GPIO1_SETDATAOUT
giuliomoro@39 288 MOV r8, 0
giuliomoro@39 289 MOV r7, 0
giuliomoro@39 290 //map GPIO_ANALOG to gpio1 pins,
giuliomoro@39 291 //r2 is gpio1_oe, r8 is gpio1_setdataout, r7 is gpio1_cleardataout, r27 is the input word
giuliomoro@39 292 //the following operations will read from r27 and update r2,r7,r8
giuliomoro@39 293 SET_GPIO_BITS r2, r8, r7, 13, 4, r27
giuliomoro@39 294 SET_GPIO_BITS r2, r8, r7, 12, 5, r27
giuliomoro@39 295 SET_GPIO_BITS r2, r8, r7, 28, 6, r27
giuliomoro@39 296 SET_GPIO_BITS r2, r8, r7, 18, 7, r27
giuliomoro@39 297 SET_GPIO_BITS r2, r8, r7, 15, 8, r27
giuliomoro@39 298 SET_GPIO_BITS r2, r8, r7, 14, 9, r27
giuliomoro@39 299 SET_GPIO_BITS r2, r8, r7, 19, 10, r27
giuliomoro@16 300 //set the output enable register for gpio1.
giuliomoro@39 301 MOV r3, GPIO1 | GPIO_OE //use r3 as a temp register
giuliomoro@39 302 SBBO r2, r3, 0, 4 //takes two cycles (10ns)
giuliomoro@16 303 //GPIO1-end
giuliomoro@39 304 // r2 is now unused
giuliomoro@16 305
giuliomoro@16 306 //GPIO2-start
giuliomoro@39 307 //r3 will hold GPIO1_OE
giuliomoro@39 308 //load current status of GPIO_OE in r3
giuliomoro@39 309 MOV r3, GPIO2 | GPIO_OE
giuliomoro@26 310 //it takes 200ns to go through the next instructions
giuliomoro@39 311 LBBO r3, r3, 0, 4
giuliomoro@16 312 //process oe and datain and prepare dataout for GPIO2
giuliomoro@39 313 //r4 will contain GPIO2_CLEARDATAOUT
giuliomoro@39 314 //r5 will contain GPIO2_SETDATAOUT
giuliomoro@39 315 MOV r5, 0
giuliomoro@39 316 MOV r4, 0
giuliomoro@39 317 //map GPIO_ANALOG to gpio2 pins
giuliomoro@39 318 //r3 is gpio2_oe, r5 is gpio2_setdataout, r4 is gpio2_cleardataout, r27 is the input word
giuliomoro@39 319 //the following operations will read from r27 and update r3,r4,r5
giuliomoro@39 320 SET_GPIO_BITS r3, r5, r4, 2, 0, r27
giuliomoro@39 321 SET_GPIO_BITS r3, r5, r4, 3, 1, r27
giuliomoro@39 322 SET_GPIO_BITS r3, r5, r4, 5, 2, r27
giuliomoro@39 323 SET_GPIO_BITS r3, r5, r4, 4, 3, r27
giuliomoro@39 324 SET_GPIO_BITS r3, r5, r4, 1, 11, r27
giuliomoro@39 325 SET_GPIO_BITS r3, r5, r4, 22, 12, r27
giuliomoro@39 326 SET_GPIO_BITS r3, r5, r4, 24, 13, r27
giuliomoro@39 327 SET_GPIO_BITS r3, r5, r4, 23, 14, r27
giuliomoro@39 328 SET_GPIO_BITS r3, r5, r4, 25, 15, r27
giuliomoro@16 329 //set the output enable register for gpio2.
giuliomoro@39 330 MOV r2, GPIO2 | GPIO_OE //use r2 as a temp registerp
giuliomoro@39 331 SBBO r3, r2, 0, 4 //takes two cycles (10ns)
giuliomoro@16 332 //GPIO2-end
giuliomoro@39 333 //r3 is now unused
giuliomoro@16 334
giuliomoro@39 335 //load current inputs in r2, r3
giuliomoro@39 336 //r2 will contain GPIO1_DATAIN
giuliomoro@39 337 //r3 will contain GPIO2_DATAIN
giuliomoro@39 338 //load the memory locations
giuliomoro@39 339 MOV r2, GPIO1 | GPIO_DATAIN
giuliomoro@39 340 MOV r3, GPIO2 | GPIO_DATAIN
giuliomoro@26 341 //takes 375 nns to go through the next two instructions
giuliomoro@39 342 //read the datain
giuliomoro@39 343 LBBO r2, r2, 0, 4
giuliomoro@39 344 LBBO r3, r3, 0, 4
giuliomoro@39 345 //now read from r2 and r3 only the channels that are set as input in the lower word of r27
giuliomoro@39 346 // and set their value in the high word of r27
giuliomoro@39 347 //GPIO1
giuliomoro@39 348 READ_GPIO_BITS r2, 13, 4, r27
giuliomoro@39 349 READ_GPIO_BITS r2, 12, 5, r27
giuliomoro@39 350 READ_GPIO_BITS r2, 28, 6, r27
giuliomoro@39 351 READ_GPIO_BITS r2, 18, 7, r27
giuliomoro@39 352 READ_GPIO_BITS r2, 15, 8, r27
giuliomoro@39 353 READ_GPIO_BITS r2, 14, 9, r27
giuliomoro@39 354 READ_GPIO_BITS r2, 19, 10, r27
giuliomoro@39 355 //GPIO2
giuliomoro@39 356 READ_GPIO_BITS r3, 2, 0, r27
giuliomoro@39 357 READ_GPIO_BITS r3, 3, 1, r27
giuliomoro@39 358 READ_GPIO_BITS r3, 5, 2, r27
giuliomoro@39 359 READ_GPIO_BITS r3, 4, 3, r27
giuliomoro@39 360 READ_GPIO_BITS r3, 1, 11, r27
giuliomoro@39 361 READ_GPIO_BITS r3, 22, 12, r27
giuliomoro@39 362 READ_GPIO_BITS r3, 24, 13, r27
giuliomoro@39 363 READ_GPIO_BITS r3, 23, 14, r27
giuliomoro@39 364 READ_GPIO_BITS r3, 25, 15, r27
giuliomoro@39 365 //r2, r3 are now unused
giuliomoro@16 366
giuliomoro@16 367 //now all the setdataout and cleardataout are ready to be written to the GPIO register.
giuliomoro@39 368 //CLEARDATAOUT and SETDATAOUT are consecutive positions in memory, so we just write 8 bytes to CLEARDATAOUT.
giuliomoro@39 369 //We can do this because we chose cleardata and setdata registers for a given GPIO to be consecutive
giuliomoro@16 370 //load the memory addresses to be written to
giuliomoro@39 371 MOV r2, GPIO1 | GPIO_CLEARDATAOUT //use r2 as a temp register
giuliomoro@39 372 MOV r3, GPIO2 | GPIO_CLEARDATAOUT //use r3 as a temp register
giuliomoro@16 373 //write 8 bytes for each GPIO
giuliomoro@39 374 //takes 30ns in total to go through the following two instructions
giuliomoro@39 375 SBBO r7, r2, 0, 8 //store r7 and r8 in GPIO1_CLEARDATAOUT and GPIO1_SETDATAOUT
giuliomoro@39 376 //takes 145ns to be effective when going low, 185ns when going high
giuliomoro@39 377 SBBO r4, r3, 0, 8 //store r4 and r5 in GPIO2_CLEARDATAOUT and GPIO2_SETDATAOUT
giuliomoro@39 378 //takes 95ns to be effective when going low, 130ns when going high
giuliomoro@16 379 //reversing the order of the two lines above will swap the performances between the GPIO modules
giuliomoro@16 380 //i.e.: the first line will always take 145ns/185ns and the second one will always take 95ns/130ns,
giuliomoro@16 381 //regardless of whether the order is gpio1-gpio2 or gpio2-gpio1
giuliomoro@39 382 JMP r28.w0 // go back to ADC_WRITE_AND_PROCESS_GPIO
giuliomoro@16 383
giuliomoro@39 384 .macro HANG //useful for debugging
giuliomoro@38 385 DALOOP:
giuliomoro@38 386 set r30.t14
giuliomoro@38 387 clr r30.t14
giuliomoro@38 388 QBA DALOOP
giuliomoro@38 389 .endm
giuliomoro@39 390
andrewm@0 391 // Bring CS line low to write to DAC
andrewm@0 392 .macro DAC_CS_ASSERT
andrewm@0 393 MOV r27, DAC_CS_PIN
andrewm@0 394 MOV r28, DAC_GPIO + GPIO_CLEARDATAOUT
andrewm@0 395 SBBO r27, r28, 0, 4
andrewm@0 396 .endm
andrewm@0 397
andrewm@0 398 // Bring CS line high at end of DAC transaction
andrewm@0 399 .macro DAC_CS_UNASSERT
andrewm@0 400 MOV r27, DAC_CS_PIN
andrewm@0 401 MOV r28, DAC_GPIO + GPIO_SETDATAOUT
andrewm@0 402 SBBO r27, r28, 0, 4
andrewm@0 403 .endm
andrewm@0 404
andrewm@0 405 // Write to DAC TX register
andrewm@0 406 .macro DAC_TX
andrewm@0 407 .mparam data
andrewm@0 408 SBBO data, reg_spi_addr, SPI_CH0TX, 4
andrewm@0 409 .endm
andrewm@0 410
andrewm@0 411 // Wait for SPI to finish (uses RXS indicator)
andrewm@0 412 .macro DAC_WAIT_FOR_FINISH
andrewm@0 413 LOOP:
andrewm@0 414 LBBO r27, reg_spi_addr, SPI_CH0STAT, 4
andrewm@0 415 QBBC LOOP, r27, 0
andrewm@0 416 .endm
andrewm@0 417
andrewm@0 418 // Read the RX word to clear
andrewm@0 419 .macro DAC_DISCARD_RX
andrewm@0 420 LBBO r27, reg_spi_addr, SPI_CH0RX, 4
andrewm@0 421 .endm
andrewm@0 422
andrewm@0 423 // Complete DAC write with chip select
andrewm@0 424 .macro DAC_WRITE
andrewm@0 425 .mparam reg
andrewm@0 426 DAC_CS_ASSERT
andrewm@0 427 DAC_TX reg
andrewm@0 428 DAC_WAIT_FOR_FINISH
andrewm@0 429 DAC_CS_UNASSERT
andrewm@0 430 DAC_DISCARD_RX
andrewm@0 431 .endm
andrewm@0 432
andrewm@0 433 // Bring CS line low to write to ADC
andrewm@0 434 .macro ADC_CS_ASSERT
andrewm@0 435 MOV r27, ADC_CS_PIN
andrewm@0 436 MOV r28, ADC_GPIO + GPIO_CLEARDATAOUT
andrewm@0 437 SBBO r27, r28, 0, 4
andrewm@0 438 .endm
andrewm@0 439
andrewm@0 440 // Bring CS line high at end of ADC transaction
andrewm@0 441 .macro ADC_CS_UNASSERT
andrewm@0 442 MOV r27, ADC_CS_PIN
andrewm@0 443 MOV r28, ADC_GPIO + GPIO_SETDATAOUT
andrewm@0 444 SBBO r27, r28, 0, 4
andrewm@0 445 .endm
andrewm@0 446
andrewm@0 447 // Write to ADC TX register
andrewm@0 448 .macro ADC_TX
andrewm@0 449 .mparam data
andrewm@0 450 SBBO data, reg_spi_addr, SPI_CH1TX, 4
andrewm@0 451 .endm
andrewm@0 452
andrewm@0 453 // Wait for SPI to finish (uses RXS indicator)
andrewm@0 454 .macro ADC_WAIT_FOR_FINISH
andrewm@0 455 LOOP:
andrewm@0 456 LBBO r27, reg_spi_addr, SPI_CH1STAT, 4
andrewm@0 457 QBBC LOOP, r27, 0
andrewm@0 458 .endm
andrewm@0 459
andrewm@0 460 // Read the RX word to clear; store output
andrewm@0 461 .macro ADC_RX
andrewm@0 462 .mparam data
andrewm@0 463 LBBO data, reg_spi_addr, SPI_CH1RX, 4
andrewm@0 464 .endm
andrewm@0 465
andrewm@0 466 // Complete ADC write+read with chip select
andrewm@0 467 .macro ADC_WRITE
andrewm@0 468 .mparam in, out
andrewm@0 469 ADC_CS_ASSERT
andrewm@0 470 ADC_TX in
andrewm@0 471 ADC_WAIT_FOR_FINISH
andrewm@0 472 ADC_RX out
andrewm@0 473 ADC_CS_UNASSERT
andrewm@0 474 .endm
andrewm@0 475
giuliomoro@19 476 // Complete ADC write+read with chip select and also performs IO for digital
giuliomoro@16 477 .macro ADC_WRITE_GPIO
giuliomoro@16 478 .mparam in, out, do_gpio
giuliomoro@16 479 ADC_CS_ASSERT
giuliomoro@16 480 ADC_TX in
giuliomoro@19 481 QBBC GPIO_DONE, reg_flags, FLAG_BIT_USE_DIGITAL //skip if DIGITAL is disabled
giuliomoro@19 482 AND r27, do_gpio, 0x3 // only do a DIGITAL every 2 SPI I/O
giuliomoro@16 483 QBNE GPIO_DONE, r27, 0
giuliomoro@16 484 //from here to GPIO_DONE takes 1.8us, while usually ADC_WAIT_FOR_FINISH only waits for 1.14us.
giuliomoro@19 485 //TODO: it would be better to split the DIGITAL stuff in two parts:
giuliomoro@16 486 //- one taking place during DAC_WRITE which sets the GPIO_OE
giuliomoro@16 487 //- and the other during ADC_WRITE which actually reads DATAIN and writes CLEAR/SET DATAOUT
giuliomoro@39 488 //r27 is actually r27, so do not use r27 from here to ...
giuliomoro@40 489 LBBO r27, reg_digital_current, 0, 4
giuliomoro@39 490 JAL r28.w0, DIGITAL // note that this is not called as a macro, but with JAL. r28 will contain the return address
giuliomoro@40 491 SBBO r27, reg_digital_current, 0, 4
giuliomoro@16 492 //..here you can start using r27 again
giuliomoro@40 493 ADD reg_digital_current, reg_digital_current, 4 //increment pointer
giuliomoro@16 494 GPIO_DONE:
giuliomoro@16 495 ADC_WAIT_FOR_FINISH
giuliomoro@16 496 ADC_RX out
giuliomoro@16 497 ADC_CS_UNASSERT
giuliomoro@16 498 .endm
giuliomoro@16 499
andrewm@0 500 // Write a McASP register
andrewm@0 501 .macro MCASP_REG_WRITE
andrewm@0 502 .mparam reg, value
andrewm@0 503 MOV r27, value
andrewm@0 504 SBBO r27, reg_mcasp_addr, reg, 4
andrewm@0 505 .endm
andrewm@0 506
andrewm@0 507 // Write a McASP register beyond the 0xFF boundary
andrewm@0 508 .macro MCASP_REG_WRITE_EXT
andrewm@0 509 .mparam reg, value
andrewm@0 510 MOV r27, value
andrewm@0 511 MOV r28, reg
andrewm@0 512 ADD r28, reg_mcasp_addr, r28
andrewm@0 513 SBBO r27, r28, 0, 4
andrewm@0 514 .endm
andrewm@0 515
andrewm@0 516 // Read a McASP register
andrewm@0 517 .macro MCASP_REG_READ
andrewm@0 518 .mparam reg, value
andrewm@0 519 LBBO value, reg_mcasp_addr, reg, 4
andrewm@0 520 .endm
andrewm@0 521
andrewm@0 522 // Read a McASP register beyond the 0xFF boundary
andrewm@0 523 .macro MCASP_REG_READ_EXT
andrewm@0 524 .mparam reg, value
andrewm@0 525 MOV r28, reg
andrewm@0 526 ADD r28, reg_mcasp_addr, r28
andrewm@0 527 LBBO value, r28, 0, 4
andrewm@0 528 .endm
andrewm@0 529
andrewm@0 530 // Set a bit and wait for it to come up
andrewm@0 531 .macro MCASP_REG_SET_BIT_AND_POLL
andrewm@0 532 .mparam reg, mask
andrewm@0 533 MOV r27, mask
andrewm@0 534 LBBO r28, reg_mcasp_addr, reg, 4
andrewm@0 535 OR r28, r28, r27
andrewm@0 536 SBBO r28, reg_mcasp_addr, reg, 4
andrewm@0 537 POLL:
andrewm@0 538 LBBO r28, reg_mcasp_addr, reg, 4
andrewm@0 539 AND r28, r28, r27
andrewm@0 540 QBEQ POLL, r28, 0
andrewm@0 541 .endm
andrewm@0 542
andrewm@0 543 START:
andrewm@0 544 // Set up c24 and c25 offsets with CTBIR register
andrewm@0 545 // Thus C24 points to start of PRU0 RAM
andrewm@0 546 MOV r3, 0x22020 // CTBIR0
andrewm@0 547 MOV r2, 0
andrewm@0 548 SBBO r2, r3, 0, 4
andrewm@0 549
andrewm@0 550 // Set up c28 pointer offset for shared PRU RAM
andrewm@0 551 MOV r3, 0x22028 // CTPPR0
andrewm@0 552 MOV r2, 0x00000120 // To get address 0x00012000
andrewm@0 553 SBBO r2, r3, 0, 4
andrewm@0 554
andrewm@0 555 // Load useful registers for addressing SPI
andrewm@0 556 MOV reg_comm_addr, SHARED_COMM_MEM_BASE
andrewm@0 557 MOV reg_spi_addr, SPI_BASE
andrewm@0 558 MOV reg_mcasp_addr, MCASP_BASE
andrewm@0 559
andrewm@0 560 // Set ARM such that PRU can write to registers
andrewm@0 561 LBCO r0, C4, 4, 4
andrewm@0 562 CLR r0, r0, 4
andrewm@0 563 SBCO r0, C4, 4, 4
andrewm@0 564
andrewm@0 565 // Clear flags
andrewm@0 566 MOV reg_flags, 0
andrewm@0 567
andrewm@12 568 // Default number of channels in case SPI disabled
andrewm@12 569 LDI reg_num_channels, 8
andrewm@12 570
giuliomoro@19 571 // Find out whether we should use DIGITAL
giuliomoro@19 572 LBBO r2, reg_comm_addr, COMM_USE_DIGITAL, 4
giuliomoro@38 573 QBEQ DIGITAL_INIT_DONE, r2, 0 // if we use digital
giuliomoro@38 574 SET reg_flags, reg_flags, FLAG_BIT_USE_DIGITAL
giuliomoro@38 575 /* This block of code is not really needed, as the memory is initialized by ARM before the PRU is started.
giuliomoro@38 576 Will leave it here for future reference
giuliomoro@38 577 DIGITAL_INIT: //set the digital buffer to 0x0000ffff (all inputs), to prevent unwanted high outputs
giuliomoro@38 578 //the loop is unrolled by a factor of four just to take advantage of the speed of SBBO on larger byte bursts, but there is no real need for it
giuliomoro@38 579 MOV r2, 0x0000ffff //value to store. 0x0000ffff means all inputs
giuliomoro@38 580 MOV r3, MEM_DIGITAL_BASE //start of the digital buffer
giuliomoro@38 581 MOV r4, MEM_DIGITAL_BASE+2*MEM_DIGITAL_BUFFER1_OFFSET //end of the digital buffer
giuliomoro@38 582 DIGITAL_INIT_BUFFER_LOOP:
giuliomoro@38 583 SBBO r2, r3, 0, 4
giuliomoro@38 584 ADD r3, r3, 4 //increment pointer
giuliomoro@38 585 QBGT DIGITAL_INIT_BUFFER_LOOP, r3, r4 //loop until we reach the end of the buffer
giuliomoro@38 586 */
giuliomoro@38 587 DIGITAL_INIT_DONE:
andrewm@0 588 // Find out whether we should use SPI ADC and DAC
andrewm@0 589 LBBO r2, reg_comm_addr, COMM_USE_SPI, 4
andrewm@0 590 QBEQ SPI_FLAG_CHECK_DONE, r2, 0
andrewm@0 591 SET reg_flags, reg_flags, FLAG_BIT_USE_SPI
andrewm@0 592 SPI_FLAG_CHECK_DONE:
andrewm@0 593 // If we don't use SPI, then skip all this init
andrewm@0 594 QBBC SPI_INIT_DONE, reg_flags, FLAG_BIT_USE_SPI
andrewm@12 595
andrewm@12 596 // Load the number of channels: valid values are 8, 4 or 2
andrewm@12 597 LBBO reg_num_channels, reg_comm_addr, COMM_NUM_CHANNELS, 4
andrewm@12 598 QBGT SPI_NUM_CHANNELS_LT8, reg_num_channels, 8 // 8 > num_channels ?
andrewm@12 599 LDI reg_num_channels, 8 // If N >= 8, N = 8
andrewm@12 600 QBA SPI_NUM_CHANNELS_DONE
andrewm@12 601 SPI_NUM_CHANNELS_LT8:
andrewm@12 602 QBGT SPI_NUM_CHANNELS_LT4, reg_num_channels, 4 // 4 > num_channels ?
andrewm@12 603 LDI reg_num_channels, 4 // If N >= 4, N = 4
andrewm@12 604 QBA SPI_NUM_CHANNELS_DONE
andrewm@12 605 SPI_NUM_CHANNELS_LT4:
andrewm@12 606 LDI reg_num_channels, 2 // else N = 2
andrewm@12 607 SPI_NUM_CHANNELS_DONE:
andrewm@0 608
andrewm@0 609 // Init SPI clock
andrewm@0 610 MOV r2, 0x02
andrewm@0 611 MOV r3, CLOCK_BASE + CLOCK_SPI0
andrewm@0 612 SBBO r2, r3, 0, 4
andrewm@0 613
andrewm@0 614 // Reset SPI and wait for finish
andrewm@0 615 MOV r2, 0x02
andrewm@0 616 SBBO r2, reg_spi_addr, SPI_SYSCONFIG, 4
andrewm@0 617
andrewm@0 618 SPI_WAIT_RESET:
andrewm@0 619 LBBO r2, reg_spi_addr, SPI_SYSSTATUS, 4
andrewm@0 620 QBBC SPI_WAIT_RESET, r2, 0
andrewm@0 621
andrewm@0 622 // Turn off SPI channels
andrewm@0 623 MOV r2, 0
andrewm@0 624 SBBO r2, reg_spi_addr, SPI_CH0CTRL, 4
andrewm@0 625 SBBO r2, reg_spi_addr, SPI_CH1CTRL, 4
andrewm@0 626
andrewm@0 627 // Set to master; chip select lines enabled (CS0 used for DAC)
andrewm@0 628 MOV r2, 0x00
andrewm@0 629 SBBO r2, reg_spi_addr, SPI_MODULCTRL, 4
andrewm@0 630
andrewm@0 631 // Configure CH0 for DAC
andrewm@0 632 MOV r2, (3 << 27) | (DAC_DPE << 16) | (DAC_TRM << 12) | ((DAC_WL - 1) << 7) | (DAC_CLK_DIV << 2) | DAC_CLK_MODE | (1 << 6)
andrewm@0 633 SBBO r2, reg_spi_addr, SPI_CH0CONF, 4
andrewm@0 634
andrewm@0 635 // Configure CH1 for ADC
andrewm@0 636 MOV r2, (3 << 27) | (ADC_DPE << 16) | (ADC_TRM << 12) | ((ADC_WL - 1) << 7) | (ADC_CLK_DIV << 2) | ADC_CLK_MODE
andrewm@0 637 SBBO r2, reg_spi_addr, SPI_CH1CONF, 4
andrewm@0 638
andrewm@0 639 // Turn on SPI channels
andrewm@0 640 MOV r2, 0x01
andrewm@0 641 SBBO r2, reg_spi_addr, SPI_CH0CTRL, 4
andrewm@0 642 SBBO r2, reg_spi_addr, SPI_CH1CTRL, 4
andrewm@0 643
andrewm@0 644 // DAC power-on reset sequence
andrewm@0 645 MOV r2, (0x07 << AD5668_COMMAND_OFFSET)
andrewm@0 646 DAC_WRITE r2
andrewm@0 647
andrewm@0 648 // Initialise ADC
andrewm@0 649 MOV r2, AD7699_CFG_MASK | (0 << AD7699_CHANNEL_OFFSET) | (0 << AD7699_SEQ_OFFSET)
andrewm@0 650 ADC_WRITE r2, r2
andrewm@0 651
andrewm@0 652 // Enable DAC internal reference
andrewm@0 653 MOV r2, (0x08 << AD5668_COMMAND_OFFSET) | (0x01 << AD5668_REF_OFFSET)
andrewm@0 654 DAC_WRITE r2
andrewm@0 655
andrewm@0 656 // Read ADC ch0 and ch1: result is always 2 samples behind so start here
andrewm@0 657 MOV r2, AD7699_CFG_MASK | (0x00 << AD7699_CHANNEL_OFFSET)
andrewm@0 658 ADC_WRITE r2, r2
andrewm@0 659
andrewm@0 660 MOV r2, AD7699_CFG_MASK | (0x01 << AD7699_CHANNEL_OFFSET)
andrewm@0 661 ADC_WRITE r2, r2
andrewm@0 662 SPI_INIT_DONE:
andrewm@0 663
andrewm@0 664 // Prepare McASP0 for audio
andrewm@0 665 MCASP_REG_WRITE MCASP_GBLCTL, 0 // Disable McASP
andrewm@0 666 MCASP_REG_WRITE_EXT MCASP_SRCTL0, 0 // All serialisers off
andrewm@0 667 MCASP_REG_WRITE_EXT MCASP_SRCTL1, 0
andrewm@0 668 MCASP_REG_WRITE_EXT MCASP_SRCTL2, 0
andrewm@0 669 MCASP_REG_WRITE_EXT MCASP_SRCTL3, 0
andrewm@0 670 MCASP_REG_WRITE_EXT MCASP_SRCTL4, 0
andrewm@0 671 MCASP_REG_WRITE_EXT MCASP_SRCTL5, 0
andrewm@0 672
andrewm@0 673 MCASP_REG_WRITE MCASP_PWRIDLESYSCONFIG, 0x02 // Power on
andrewm@0 674 MCASP_REG_WRITE MCASP_PFUNC, 0x00 // All pins are McASP
andrewm@0 675 MCASP_REG_WRITE MCASP_PDIR, MCASP_OUTPUT_PINS // Set pin direction
andrewm@0 676 MCASP_REG_WRITE MCASP_DLBCTL, 0x00
andrewm@0 677 MCASP_REG_WRITE MCASP_DITCTL, 0x00
andrewm@0 678 MCASP_REG_WRITE MCASP_RMASK, MCASP_DATA_MASK // 16 bit data receive
andrewm@0 679 MCASP_REG_WRITE MCASP_RFMT, MCASP_DATA_FORMAT // Set data format
andrewm@0 680 MCASP_REG_WRITE MCASP_AFSRCTL, 0x100 // I2S mode
andrewm@0 681 MCASP_REG_WRITE MCASP_ACLKRCTL, 0x80 // Sample on rising edge
andrewm@0 682 MCASP_REG_WRITE MCASP_AHCLKRCTL, 0x8001 // Internal clock, not inv, /2; irrelevant?
andrewm@0 683 MCASP_REG_WRITE MCASP_RTDM, 0x03 // Enable TDM slots 0 and 1
andrewm@0 684 MCASP_REG_WRITE MCASP_RINTCTL, 0x00 // No interrupts
andrewm@0 685 MCASP_REG_WRITE MCASP_XMASK, MCASP_DATA_MASK // 16 bit data transmit
andrewm@0 686 MCASP_REG_WRITE MCASP_XFMT, MCASP_DATA_FORMAT // Set data format
andrewm@0 687 MCASP_REG_WRITE MCASP_AFSXCTL, 0x100 // I2S mode
andrewm@0 688 MCASP_REG_WRITE MCASP_ACLKXCTL, 0x00 // Transmit on rising edge, sync. xmit and recv
andrewm@0 689 MCASP_REG_WRITE MCASP_AHCLKXCTL, 0x8001 // External clock from AHCLKX
andrewm@0 690 MCASP_REG_WRITE MCASP_XTDM, 0x03 // Enable TDM slots 0 and 1
andrewm@0 691 MCASP_REG_WRITE MCASP_XINTCTL, 0x00 // No interrupts
andrewm@0 692
andrewm@0 693 MCASP_REG_WRITE_EXT MCASP_SRCTL_R, 0x02 // Set up receive serialiser
andrewm@0 694 MCASP_REG_WRITE_EXT MCASP_SRCTL_X, 0x01 // Set up transmit serialiser
andrewm@0 695 MCASP_REG_WRITE_EXT MCASP_WFIFOCTL, 0x00 // Disable FIFOs
andrewm@0 696 MCASP_REG_WRITE_EXT MCASP_RFIFOCTL, 0x00
andrewm@0 697
andrewm@0 698 MCASP_REG_WRITE MCASP_XSTAT, 0xFF // Clear transmit errors
andrewm@0 699 MCASP_REG_WRITE MCASP_RSTAT, 0xFF // Clear receive errors
andrewm@0 700
andrewm@0 701 MCASP_REG_SET_BIT_AND_POLL MCASP_RGBLCTL, (1 << 1) // Set RHCLKRST
andrewm@0 702 MCASP_REG_SET_BIT_AND_POLL MCASP_XGBLCTL, (1 << 9) // Set XHCLKRST
andrewm@0 703
andrewm@0 704 // The above write sequence will have temporarily changed the AHCLKX frequency
andrewm@0 705 // The PLL needs time to settle or the sample rate will be unstable and possibly
andrewm@0 706 // cause an underrun. Give it ~1ms before going on.
andrewm@0 707 // 10ns per loop iteration = 10^-8s --> 10^5 iterations needed
andrewm@0 708
andrewm@0 709 MOV r2, 1 << 28
andrewm@0 710 MOV r3, GPIO1 + GPIO_SETDATAOUT
andrewm@0 711 SBBO r2, r3, 0, 4
andrewm@0 712
andrewm@0 713 MOV r2, 100000
andrewm@0 714 MCASP_INIT_WAIT:
andrewm@0 715 SUB r2, r2, 1
andrewm@0 716 QBNE MCASP_INIT_WAIT, r2, 0
andrewm@0 717
andrewm@0 718 MOV r2, 1 << 28
andrewm@0 719 MOV r3, GPIO1 + GPIO_CLEARDATAOUT
andrewm@0 720 SBBO r2, r3, 0, 4
andrewm@0 721
andrewm@0 722 MCASP_REG_SET_BIT_AND_POLL MCASP_RGBLCTL, (1 << 0) // Set RCLKRST
andrewm@0 723 MCASP_REG_SET_BIT_AND_POLL MCASP_XGBLCTL, (1 << 8) // Set XCLKRST
andrewm@0 724 MCASP_REG_SET_BIT_AND_POLL MCASP_RGBLCTL, (1 << 2) // Set RSRCLR
andrewm@0 725 MCASP_REG_SET_BIT_AND_POLL MCASP_XGBLCTL, (1 << 10) // Set XSRCLR
andrewm@0 726 MCASP_REG_SET_BIT_AND_POLL MCASP_RGBLCTL, (1 << 3) // Set RSMRST
andrewm@0 727 MCASP_REG_SET_BIT_AND_POLL MCASP_XGBLCTL, (1 << 11) // Set XSMRST
andrewm@0 728
andrewm@0 729 MCASP_REG_WRITE_EXT MCASP_XBUF, 0x00 // Write to the transmit buffer to prevent underflow
andrewm@0 730
andrewm@0 731 MCASP_REG_SET_BIT_AND_POLL MCASP_RGBLCTL, (1 << 4) // Set RFRST
andrewm@0 732 MCASP_REG_SET_BIT_AND_POLL MCASP_XGBLCTL, (1 << 12) // Set XFRST
andrewm@0 733
andrewm@0 734 // Initialisation
giuliomoro@38 735 LBBO reg_frame_total, reg_comm_addr, COMM_BUFFER_FRAMES, 4 // Total frame count (SPI; 0.5x-2x for McASP)
giuliomoro@38 736 MOV reg_dac_buf0, 0 // DAC buffer 0 start pointer
giuliomoro@38 737 LSL reg_dac_buf1, reg_frame_total, 1 // DAC buffer 1 start pointer = N[ch]*2[bytes]*bufsize
giuliomoro@38 738 LMBD r2, reg_num_channels, 1 // Returns 1, 2 or 3 depending on the number of channels
giuliomoro@38 739 LSL reg_dac_buf1, reg_dac_buf1, r2 // Multiply by 2, 4 or 8 to get the N[ch] scaling above
giuliomoro@38 740 MOV reg_mcasp_buf0, 0 // McASP DAC buffer 0 start pointer
giuliomoro@38 741 LSL reg_mcasp_buf1, reg_frame_total, r2 // McASP DAC buffer 1 start pointer = 2[ch]*2[bytes]*(N/4)[samples/spi]*bufsize
giuliomoro@38 742 CLR reg_flags, reg_flags, FLAG_BIT_BUFFER1 // Bit 0 holds which buffer we are on
giuliomoro@38 743 MOV r2, 0
giuliomoro@38 744 SBBO r2, reg_comm_addr, COMM_FRAME_COUNT, 4 // Start with frame count of 0
giuliomoro@38 745 /* This block of code is not really needed, as the memory is initialized by ARM before the PRU is started.
giuliomoro@38 746 Will leave it here for future reference
giuliomoro@38 747 //Initialise all SPI and audio buffers (DAC0, DAC1, ADC0, ADC1) to zero.
giuliomoro@38 748 //This is useful for analog outs so they do not have spikes during the first buffer.
giuliomoro@38 749 //This is not very useful for audio, as you still hear the initial "tumpf" when the converter starts
giuliomoro@38 750 //and each sample in the DAC buffer is reset to 0 after it is written to the DAC.
giuliomoro@38 751
giuliomoro@38 752 QBBC SPI_INIT_BUFFER_DONE, reg_flags, FLAG_BIT_USE_SPI
giuliomoro@38 753 //Initialize SPI buffers
giuliomoro@38 754 //compute the memory offset of the end of the audio buffer and store it in r4
giuliomoro@38 755 SUB r4, reg_dac_buf1, reg_dac_buf0 // length of the buffer, assumes reg_dac_buf1>ref_dac_buf0
giuliomoro@38 756 LSL r4, r4, 2 //length of four buffers (DAC0, DAC1, ADC0, ADC1)
giuliomoro@38 757 ADD r4, reg_dac_buf0, r4 //total offset
giuliomoro@38 758 MOV r2, 0// value to store
giuliomoro@38 759 MOV r3, 0 // offset counter
giuliomoro@38 760 SPI_INIT_BUFFER_LOOP:
giuliomoro@38 761 SBCO r2, C_ADC_DAC_MEM, r3, 4
giuliomoro@38 762 ADD r3, r3, 4
giuliomoro@38 763 QBGT SPI_INIT_BUFFER_LOOP, r3, r4
giuliomoro@38 764 SPI_INIT_BUFFER_DONE:
giuliomoro@38 765
giuliomoro@38 766 //Initialize audio buffers
giuliomoro@38 767 //compute the memory offset of the end of the audio buffer and store it in r4
giuliomoro@38 768 SUB r4, reg_mcasp_buf1, reg_mcasp_buf0 // length of the buffer, assumes reg_mcasp_buf1>ref_mcasp_buf0
giuliomoro@38 769 LSL r4, r4, 2 //length of four buffers (DAC0, DAC1, ADC0, ADC1)
giuliomoro@38 770 ADD r4, reg_mcasp_buf0, r4 //total offset
giuliomoro@38 771 MOV r2, 0 // value to store
giuliomoro@38 772 MOV r3, 0 // offset counter
giuliomoro@38 773 MCASP_INIT_BUFFER_LOOP:
giuliomoro@38 774 SBCO r2, C_MCASP_MEM, r3, 4
giuliomoro@38 775 ADD r3, r3, 4
giuliomoro@38 776 QBGT MCASP_INIT_BUFFER_LOOP, r3, r4
giuliomoro@38 777 */
andrewm@0 778 // Here we are out of sync by one TDM slot since the 0 word transmitted above will have occupied
andrewm@0 779 // the first output slot. Send one more word before jumping into the loop.
andrewm@0 780 MCASP_DAC_WAIT_BEFORE_LOOP:
andrewm@0 781 LBBO r2, reg_mcasp_addr, MCASP_XSTAT, 4
andrewm@0 782 QBBC MCASP_DAC_WAIT_BEFORE_LOOP, r2, MCASP_XSTAT_XDATA_BIT
andrewm@0 783
andrewm@0 784 MCASP_REG_WRITE_EXT MCASP_XBUF, 0x00
andrewm@0 785
andrewm@0 786 // Likewise, read and discard the first sample we get back from the ADC. This keeps the DAC and ADC
andrewm@0 787 // in sync in terms of which TDM slot we are reading (empirically found that we should throw this away
andrewm@0 788 // rather than keep it and invert the phase)
andrewm@0 789 MCASP_ADC_WAIT_BEFORE_LOOP:
andrewm@0 790 LBBO r2, reg_mcasp_addr, MCASP_RSTAT, 4
andrewm@0 791 QBBC MCASP_ADC_WAIT_BEFORE_LOOP, r2, MCASP_RSTAT_RDATA_BIT
andrewm@0 792
andrewm@0 793 MCASP_REG_READ_EXT MCASP_RBUF, r2
andrewm@0 794
andrewm@0 795 WRITE_ONE_BUFFER:
giuliomoro@38 796
andrewm@0 797 // Write a single buffer of DAC samples and read a buffer of ADC samples
andrewm@0 798 // Load starting positions
andrewm@0 799 MOV reg_dac_current, reg_dac_buf0 // DAC: reg_dac_current is current pointer
andrewm@12 800 LMBD r2, reg_num_channels, 1 // 1, 2 or 3 for 2, 4 or 8 channels
andrewm@12 801 LSL reg_adc_current, reg_frame_total, r2
andrewm@12 802 LSL reg_adc_current, reg_adc_current, 2 // N * 2 * 2 * bufsize
andrewm@12 803 ADD reg_adc_current, reg_adc_current, reg_dac_current // ADC: starts N * 2 * 2 * bufsize beyond DAC
andrewm@0 804 MOV reg_mcasp_dac_current, reg_mcasp_buf0 // McASP: set current DAC pointer
andrewm@12 805 LSL reg_mcasp_adc_current, reg_frame_total, r2 // McASP ADC: starts (N/2)*2*2*bufsize beyond DAC
andrewm@12 806 LSL reg_mcasp_adc_current, reg_mcasp_adc_current, 1
andrewm@0 807 ADC reg_mcasp_adc_current, reg_mcasp_adc_current, reg_mcasp_dac_current
andrewm@0 808 MOV reg_frame_current, 0
giuliomoro@19 809 QBBS DIGITAL_BASE_CHECK_SET, reg_flags, FLAG_BIT_BUFFER1 //check which buffer we are using for DIGITAL
giuliomoro@16 810 // if we are here, we are using buffer0
giuliomoro@40 811 MOV reg_digital_current, MEM_DIGITAL_BASE
giuliomoro@19 812 QBA DIGITAL_BASE_CHECK_DONE
giuliomoro@19 813 DIGITAL_BASE_CHECK_SET: //if we are here, we are using buffer1
giuliomoro@40 814 MOV reg_digital_current, MEM_DIGITAL_BASE+MEM_DIGITAL_BUFFER1_OFFSET //so adjust offset appropriately
giuliomoro@19 815 DIGITAL_BASE_CHECK_DONE:
giuliomoro@16 816
andrewm@0 817 WRITE_LOOP:
andrewm@12 818 // Write N channels to DAC from successive values in memory
andrewm@12 819 // At the same time, read N channels from ADC
andrewm@0 820 // Unrolled by a factor of 2 to get high and low words
andrewm@0 821 MOV r1, 0
andrewm@0 822 ADC_DAC_LOOP:
andrewm@0 823 QBBC SPI_DAC_LOAD_DONE, reg_flags, FLAG_BIT_USE_SPI
andrewm@0 824 // Load next 2 SPI DAC samples and store zero in their place
andrewm@0 825 LBCO reg_dac_data, C_ADC_DAC_MEM, reg_dac_current, 4
andrewm@0 826 MOV r2, 0
andrewm@0 827 SBCO r2, C_ADC_DAC_MEM, reg_dac_current, 4
andrewm@0 828 ADD reg_dac_current, reg_dac_current, 4
andrewm@0 829 SPI_DAC_LOAD_DONE:
andrewm@0 830
andrewm@0 831 // On even iterations, load two more samples and choose the first one
andrewm@0 832 // On odd iterations, transmit the second of the samples already loaded
andrewm@12 833 // QBBS MCASP_DAC_HIGH_WORD, r1, 1
andrewm@12 834 QBBS MCASP_DAC_HIGH_WORD, reg_flags, FLAG_BIT_MCASP_HWORD
andrewm@0 835 MCASP_DAC_LOW_WORD:
andrewm@0 836 // Load next 2 Audio DAC samples and store zero in their place
andrewm@0 837 LBCO reg_mcasp_dac_data, C_MCASP_MEM, reg_mcasp_dac_current, 4
andrewm@0 838 MOV r2, 0
andrewm@0 839 SBCO r2, C_MCASP_MEM, reg_mcasp_dac_current, 4
andrewm@0 840 ADD reg_mcasp_dac_current, reg_mcasp_dac_current, 4
andrewm@0 841
andrewm@0 842 // Mask out the low word (first in little endian)
andrewm@0 843 MOV r2, 0xFFFF
andrewm@0 844 AND r7, reg_mcasp_dac_data, r2
andrewm@0 845
andrewm@0 846 QBA MCASP_WAIT_XSTAT
andrewm@0 847 MCASP_DAC_HIGH_WORD:
andrewm@0 848 // Take the high word of the previously loaded data
andrewm@0 849 LSR r7, reg_mcasp_dac_data, 16
andrewm@0 850
andrewm@12 851 // Every 2 channels we send one audio sample; this loop already
andrewm@0 852 // sends exactly two SPI channels.
andrewm@0 853 // Wait for McASP XSTAT[XDATA] to set indicating we can write more data
andrewm@0 854 MCASP_WAIT_XSTAT:
andrewm@0 855 LBBO r2, reg_mcasp_addr, MCASP_XSTAT, 4
andrewm@0 856 QBBC MCASP_WAIT_XSTAT, r2, MCASP_XSTAT_XDATA_BIT
andrewm@0 857
andrewm@0 858 MCASP_REG_WRITE_EXT MCASP_XBUF, r7
andrewm@0 859
andrewm@0 860 // Same idea with ADC: even iterations, load the sample into the low word, odd
andrewm@0 861 // iterations, load the sample into the high word and store
andrewm@12 862 // QBBS MCASP_ADC_HIGH_WORD, r1, 1
andrewm@12 863 QBBS MCASP_ADC_HIGH_WORD, reg_flags, FLAG_BIT_MCASP_HWORD
andrewm@0 864 MCASP_ADC_LOW_WORD:
andrewm@0 865 // Start ADC data at 0
andrewm@0 866 LDI reg_mcasp_adc_data, 0
andrewm@0 867
andrewm@0 868 // Now wait for a received word to become available from the audio ADC
andrewm@0 869 MCASP_WAIT_RSTAT_LOW:
andrewm@0 870 LBBO r2, reg_mcasp_addr, MCASP_RSTAT, 4
andrewm@0 871 QBBC MCASP_WAIT_RSTAT_LOW, r2, MCASP_RSTAT_RDATA_BIT
andrewm@0 872
andrewm@0 873 // Mask low word and store in ADC data register
andrewm@0 874 MCASP_REG_READ_EXT MCASP_RBUF, r3
andrewm@0 875 MOV r2, 0xFFFF
andrewm@0 876 AND reg_mcasp_adc_data, r3, r2
andrewm@0 877 QBA MCASP_ADC_DONE
andrewm@0 878
andrewm@0 879 MCASP_ADC_HIGH_WORD:
andrewm@0 880 // Wait for a received word to become available from the audio ADC
andrewm@0 881 MCASP_WAIT_RSTAT_HIGH:
andrewm@0 882 LBBO r2, reg_mcasp_addr, MCASP_RSTAT, 4
andrewm@0 883 QBBC MCASP_WAIT_RSTAT_HIGH, r2, MCASP_RSTAT_RDATA_BIT
andrewm@0 884
andrewm@0 885 // Read data and shift 16 bits to the left (into the high word)
andrewm@0 886 MCASP_REG_READ_EXT MCASP_RBUF, r3
andrewm@0 887 LSL r3, r3, 16
andrewm@0 888 OR reg_mcasp_adc_data, reg_mcasp_adc_data, r3
andrewm@0 889
andrewm@0 890 // Now store the result and increment the pointer
andrewm@0 891 SBCO reg_mcasp_adc_data, C_MCASP_MEM, reg_mcasp_adc_current, 4
andrewm@0 892 ADD reg_mcasp_adc_current, reg_mcasp_adc_current, 4
andrewm@0 893 MCASP_ADC_DONE:
andrewm@0 894 QBBC SPI_SKIP_WRITE, reg_flags, FLAG_BIT_USE_SPI
giuliomoro@26 895
andrewm@0 896 // DAC: transmit low word (first in little endian)
andrewm@0 897 MOV r2, 0xFFFF
andrewm@0 898 AND r7, reg_dac_data, r2
andrewm@0 899 LSL r7, r7, AD5668_DATA_OFFSET
andrewm@0 900 MOV r8, (0x03 << AD5668_COMMAND_OFFSET)
andrewm@0 901 OR r7, r7, r8
andrewm@0 902 LSL r8, r1, AD5668_ADDRESS_OFFSET
andrewm@0 903 OR r7, r7, r8
andrewm@0 904 DAC_WRITE r7
andrewm@0 905
andrewm@0 906 // Read ADC channels: result is always 2 commands behind
andrewm@0 907 // Start by reading channel 2 (result is channel 0) and go
andrewm@12 908 // to N+2, but masking the channel number to be between 0 and N-1
andrewm@0 909 LDI reg_adc_data, 0
andrewm@12 910 ADD r8, r1, 2
andrewm@12 911 SUB r7, reg_num_channels, 1
andrewm@12 912 AND r8, r8, r7
andrewm@12 913 LSL r8, r8, AD7699_CHANNEL_OFFSET
andrewm@0 914 MOV r7, AD7699_CFG_MASK
andrewm@0 915 OR r7, r7, r8
giuliomoro@38 916
giuliomoro@16 917 //ssssssssssssssssssssssssssss
giuliomoro@16 918 ADC_WRITE_GPIO r7, r7, r1
andrewm@0 919
andrewm@0 920 // Mask out only the relevant 16 bits and store in reg_adc_data
andrewm@0 921 MOV r2, 0xFFFF
andrewm@0 922 AND reg_adc_data, r7, r2
andrewm@0 923
andrewm@0 924 // Increment channel index
andrewm@0 925 ADD r1, r1, 1
andrewm@0 926
andrewm@0 927 // DAC: transmit high word (second in little endian)
andrewm@0 928 LSR r7, reg_dac_data, 16
andrewm@0 929 LSL r7, r7, AD5668_DATA_OFFSET
andrewm@0 930 MOV r8, (0x03 << AD5668_COMMAND_OFFSET)
andrewm@0 931 OR r7, r7, r8
andrewm@0 932 LSL r8, r1, AD5668_ADDRESS_OFFSET
andrewm@0 933 OR r7, r7, r8
andrewm@0 934 DAC_WRITE r7
andrewm@0 935
andrewm@0 936 // Read ADC channels: result is always 2 commands behind
andrewm@0 937 // Start by reading channel 2 (result is channel 0) and go
andrewm@12 938 // to N+2, but masking the channel number to be between 0 and N-1
andrewm@12 939 ADD r8, r1, 2
andrewm@12 940 SUB r7, reg_num_channels, 1
andrewm@12 941 AND r8, r8, r7
andrewm@12 942 LSL r8, r8, AD7699_CHANNEL_OFFSET
andrewm@0 943 MOV r7, AD7699_CFG_MASK
andrewm@0 944 OR r7, r7, r8
andrewm@0 945 ADC_WRITE r7, r7
andrewm@0 946
andrewm@0 947 // Move this result up to the 16 high bits
andrewm@0 948 LSL r7, r7, 16
andrewm@0 949 OR reg_adc_data, reg_adc_data, r7
andrewm@0 950
andrewm@0 951 // Store 2 ADC words in memory
andrewm@0 952 SBCO reg_adc_data, C_ADC_DAC_MEM, reg_adc_current, 4
andrewm@0 953 ADD reg_adc_current, reg_adc_current, 4
andrewm@0 954
andrewm@12 955 // Toggle the high/low word for McASP control (since we send one word out of
andrewm@12 956 // 32 bits for each pair of SPI channels)
andrewm@12 957 XOR reg_flags, reg_flags, (1 << FLAG_BIT_MCASP_HWORD)
andrewm@12 958
andrewm@12 959 // Repeat 4 times for 8 channels (2 samples per loop, r1 += 1 already happened)
andrewm@12 960 // For 4 or 2 channels, repeat 2 or 1 times, according to flags
andrewm@0 961 ADD r1, r1, 1
andrewm@12 962 QBNE ADC_DAC_LOOP, r1, reg_num_channels
andrewm@0 963 QBA ADC_DAC_LOOP_DONE
andrewm@0 964 SPI_SKIP_WRITE:
andrewm@0 965 // We get here only if the SPI ADC and DAC are disabled
andrewm@0 966 // Just keep the loop going for McASP
andrewm@12 967
andrewm@12 968 // Toggle the high/low word for McASP control (since we send one word out of
andrewm@12 969 // 32 bits for each pair of SPI channels)
andrewm@12 970 XOR reg_flags, reg_flags, (1 << FLAG_BIT_MCASP_HWORD)
andrewm@12 971
andrewm@0 972 ADD r1, r1, 2
andrewm@12 973 QBNE ADC_DAC_LOOP, r1, reg_num_channels
andrewm@0 974
andrewm@0 975 ADC_DAC_LOOP_DONE:
andrewm@0 976 // Increment number of frames, see if we have more to write
andrewm@0 977 ADD reg_frame_current, reg_frame_current, 1
andrewm@0 978 QBNE WRITE_LOOP, reg_frame_current, reg_frame_total
andrewm@0 979
andrewm@0 980 WRITE_LOOP_DONE:
andrewm@0 981 // Now done, swap the buffers and do the next one
andrewm@0 982 // Use r2 as a temp register
andrewm@0 983 MOV r2, reg_dac_buf0
andrewm@0 984 MOV reg_dac_buf0, reg_dac_buf1
andrewm@0 985 MOV reg_dac_buf1, r2
andrewm@0 986 MOV r2, reg_mcasp_buf0
andrewm@0 987 MOV reg_mcasp_buf0, reg_mcasp_buf1
andrewm@0 988 MOV reg_mcasp_buf1, r2
giuliomoro@16 989 XOR reg_flags, reg_flags, (1 << FLAG_BIT_BUFFER1) //flip the buffer flag
andrewm@0 990
andrewm@0 991 // Notify ARM of buffer swap
andrewm@0 992 AND r2, reg_flags, (1 << FLAG_BIT_BUFFER1) // Mask out every but low bit
andrewm@0 993 SBBO r2, reg_comm_addr, COMM_CURRENT_BUFFER, 4
andrewm@45 994 MOV R31.b0, PRU1_ARM_INTERRUPT + 16 // Interrupt to host loop
andrewm@45 995
andrewm@0 996 // Increment the frame count in the comm buffer (for status monitoring)
andrewm@0 997 LBBO r2, reg_comm_addr, COMM_FRAME_COUNT, 4
andrewm@0 998 ADD r2, r2, reg_frame_total
andrewm@0 999 SBBO r2, reg_comm_addr, COMM_FRAME_COUNT, 4
andrewm@0 1000
andrewm@0 1001 // If LED blink enabled, toggle every 4096 frames
andrewm@0 1002 LBBO r3, reg_comm_addr, COMM_LED_ADDRESS, 4
andrewm@0 1003 QBEQ LED_BLINK_DONE, r3, 0
andrewm@0 1004 MOV r1, 0x1000
andrewm@0 1005 AND r2, r2, r1 // Test (frame count & 4096)
andrewm@0 1006 QBEQ LED_BLINK_OFF, r2, 0
andrewm@0 1007 LBBO r2, reg_comm_addr, COMM_LED_PIN_MASK, 4
andrewm@0 1008 MOV r1, GPIO_SETDATAOUT
andrewm@0 1009 ADD r3, r3, r1 // Address for GPIO set register
andrewm@0 1010 SBBO r2, r3, 0, 4 // Set GPIO pin
andrewm@0 1011 QBA LED_BLINK_DONE
andrewm@0 1012 LED_BLINK_OFF:
andrewm@0 1013 LBBO r2, reg_comm_addr, COMM_LED_PIN_MASK, 4
andrewm@0 1014 MOV r1, GPIO_CLEARDATAOUT
andrewm@0 1015 ADD r3, r3, r1 // Address for GPIO clear register
andrewm@0 1016 SBBO r2, r3, 0, 4 // Clear GPIO pin
andrewm@0 1017 LED_BLINK_DONE:
andrewm@0 1018 // Check if we should finish: flag is zero as long as it should run
andrewm@0 1019 LBBO r2, reg_comm_addr, COMM_SHOULD_STOP, 4
andrewm@0 1020 QBEQ WRITE_ONE_BUFFER, r2, 0
andrewm@0 1021
andrewm@0 1022 CLEANUP:
andrewm@0 1023 MCASP_REG_WRITE MCASP_GBLCTL, 0x00 // Turn off McASP
andrewm@0 1024
andrewm@0 1025 // Turn off SPI if enabled
andrewm@0 1026 QBBC SPI_CLEANUP_DONE, reg_flags, FLAG_BIT_USE_SPI
andrewm@0 1027
andrewm@0 1028 MOV r3, SPI_BASE + SPI_CH0CONF
andrewm@0 1029 LBBO r2, r3, 0, 4
andrewm@0 1030 CLR r2, r2, 13
andrewm@0 1031 CLR r2, r2, 27
andrewm@0 1032 SBBO r2, r3, 0, 4
andrewm@0 1033
andrewm@0 1034 MOV r3, SPI_BASE + SPI_CH0CTRL
andrewm@0 1035 LBBO r2, r3, 0, 4
andrewm@0 1036 CLR r2, r2, 1
andrewm@0 1037 SBBO r2, r3, 0, 4
andrewm@0 1038 SPI_CLEANUP_DONE:
andrewm@0 1039 // Signal the ARM that we have finished
andrewm@0 1040 MOV R31.b0, PRU0_ARM_INTERRUPT + 16
giuliomoro@16 1041 HALT