andrewm@0
|
1 /*
|
andrewm@0
|
2 * render.cpp
|
andrewm@0
|
3 *
|
andrewm@0
|
4 * Created on: May 28, 2014
|
andrewm@0
|
5 * Author: Victor Zappi
|
andrewm@0
|
6 */
|
andrewm@0
|
7
|
andrewm@0
|
8 #include "../../include/RTAudio.h"
|
andrewm@0
|
9 #include "../../include/PRU.h"
|
andrewm@0
|
10 #include "StatusLED.h"
|
andrewm@0
|
11 #include "config.h"
|
andrewm@0
|
12 #include "OscillatorBank.h"
|
andrewm@0
|
13 #include "FeedbackOscillator.h"
|
andrewm@0
|
14 #include "ADSR.h"
|
andrewm@0
|
15 #include "FIRfilter.h"
|
andrewm@0
|
16 #include <assert.h>
|
andrewm@0
|
17 #include <cmath>
|
andrewm@0
|
18 #include <vector>
|
andrewm@0
|
19
|
andrewm@0
|
20 #undef DBOX_CAPE_TEST
|
andrewm@0
|
21
|
andrewm@0
|
22 #define N_OCT 4.0 // maximum number of octaves on sensor 1
|
andrewm@0
|
23
|
andrewm@0
|
24 extern vector<OscillatorBank*> gOscBanks;
|
andrewm@0
|
25 extern int gCurrentOscBank;
|
andrewm@0
|
26 extern int gNextOscBank;
|
andrewm@0
|
27 extern PRU *gPRU;
|
andrewm@0
|
28 extern StatusLED gStatusLED;
|
andrewm@0
|
29 extern bool gIsLoading;
|
andrewm@0
|
30 extern bool gAudioIn;
|
andrewm@0
|
31 extern int gPeriodSize;
|
andrewm@0
|
32
|
andrewm@0
|
33 float *gOscillatorBuffer1, *gOscillatorBuffer2;
|
andrewm@0
|
34 float *gOscillatorBufferRead, *gOscillatorBufferWrite;
|
andrewm@0
|
35 int gOscillatorBufferReadPointer = 0;
|
andrewm@0
|
36 int gOscillatorBufferReadCurrentSize = 0;
|
andrewm@0
|
37 int gOscillatorBufferWriteCurrentSize = 0;
|
andrewm@0
|
38 bool gOscillatorNeedsRender = false;
|
andrewm@0
|
39
|
andrewm@0
|
40 int gMatrixSampleCount = 0; // How many samples have elapsed on the matrix
|
andrewm@0
|
41
|
andrewm@0
|
42 // Wavetable which changes in response to an oscillator
|
andrewm@0
|
43 float *gDynamicWavetable;
|
andrewm@0
|
44 int gDynamicWavetableLength;
|
andrewm@0
|
45 bool gDynamicWavetableNeedsRender = false;
|
andrewm@0
|
46
|
andrewm@0
|
47 // These variables handle the hysteresis oscillator used for setting the playback speed
|
andrewm@0
|
48 bool gSpeedHysteresisOscillatorRising = false;
|
andrewm@0
|
49 int gSpeedHysteresisLastTrigger = 0;
|
andrewm@0
|
50
|
andrewm@0
|
51 // These variables handle the feedback oscillator used for controlling the wavetable
|
andrewm@0
|
52 FeedbackOscillator gFeedbackOscillator;
|
andrewm@0
|
53 float *gFeedbackOscillatorTable;
|
andrewm@0
|
54 int gFeedbackOscillatorTableLength;
|
andrewm@0
|
55
|
andrewm@0
|
56 // This comes from sensor.cpp where it records the most recent touch location on
|
andrewm@0
|
57 // sensor 0.
|
andrewm@0
|
58 extern float gSensor0LatestTouchPos;
|
andrewm@0
|
59 extern int gSensor0LatestTouchNum;
|
andrewm@0
|
60 uint16_t gPitchLatestInput = 0;
|
andrewm@0
|
61
|
andrewm@0
|
62 extern float gSensor1LatestTouchPos[];
|
andrewm@0
|
63 //extern float gSensor1LatestTouchSizes[];
|
andrewm@0
|
64 extern int gSensor1LatestTouchCount;
|
andrewm@0
|
65 extern int gSensor1LatestTouchIndex;
|
andrewm@0
|
66 int gSensor1LastTouchIndex = -1;
|
andrewm@0
|
67 int gSensor1InputDelayCounter = -1;
|
andrewm@0
|
68 int gSensor1InputIndex = 0;
|
andrewm@0
|
69 float gSensor1MatrixTouchPos[5] = {0};
|
andrewm@0
|
70
|
andrewm@0
|
71 // FSR value from matrix input
|
andrewm@0
|
72 extern int gLastFSRValue;
|
andrewm@0
|
73
|
andrewm@0
|
74 // Loop points from matrix input 4
|
andrewm@0
|
75 const int gLoopPointsInputBufferSize = 256;
|
andrewm@0
|
76 uint16_t gLoopPointsInputBuffer[gLoopPointsInputBufferSize];
|
andrewm@0
|
77 int gLoopPointsInputBufferPointer = 0;
|
andrewm@0
|
78 int gLoopPointMin = 0, gLoopPointMax = 0;
|
andrewm@0
|
79
|
andrewm@0
|
80 // multiplier to activate or mute audio in
|
andrewm@0
|
81 int audioInStatus = 0;
|
andrewm@0
|
82
|
andrewm@0
|
83 // xenomai timer
|
andrewm@0
|
84 SRTIME prevChangeNs = 0;
|
andrewm@0
|
85
|
andrewm@0
|
86 // pitch vars
|
andrewm@0
|
87 float octaveSplitter;
|
andrewm@0
|
88 u_int16_t semitones[((int)N_OCT*12)+1];
|
andrewm@0
|
89 float deltaTouch = 0;
|
andrewm@0
|
90 float deltaWeightP = 0.5;
|
andrewm@0
|
91 float deltaWeightI = 0.0005;
|
andrewm@0
|
92
|
andrewm@0
|
93 // filter vars
|
andrewm@0
|
94 ne10_fir_instance_f32_t filter[2];
|
andrewm@0
|
95 ne10_float32_t *filterIn[2];
|
andrewm@0
|
96 ne10_float32_t *filterOut[2];
|
andrewm@0
|
97 ne10_uint32_t blockSize;
|
andrewm@0
|
98 ne10_float32_t *filterState[2];
|
andrewm@0
|
99 ne10_float32_t prevFiltered[2];
|
andrewm@0
|
100 int filterGain = 80;
|
andrewm@0
|
101 ADSR PeakBurst[2];
|
andrewm@0
|
102 float peak[2];
|
andrewm@0
|
103 float peakThresh = 0.2;
|
andrewm@0
|
104
|
andrewm@0
|
105 // Tasks for lower-priority calculation
|
andrewm@0
|
106 AuxiliaryTask gMediumPriorityRender, gLowPriorityRender;
|
andrewm@0
|
107
|
andrewm@0
|
108
|
andrewm@0
|
109 extern "C" {
|
andrewm@0
|
110 // Function prototype for ARM assembly implementation of oscillator bank
|
andrewm@0
|
111 void oscillator_bank_neon(int numAudioFrames, float *audioOut,
|
andrewm@0
|
112 int activePartialNum, int lookupTableSize,
|
andrewm@0
|
113 float *phases, float *frequencies, float *amplitudes,
|
andrewm@0
|
114 float *freqDerivatives, float *ampDerivatives,
|
andrewm@0
|
115 float *lookupTable);
|
andrewm@0
|
116
|
andrewm@0
|
117 void wavetable_interpolate_neon(int numSamplesIn, int numSamplesOut,
|
andrewm@0
|
118 float *tableIn, float *tableOut);
|
andrewm@0
|
119 }
|
andrewm@0
|
120
|
andrewm@0
|
121 void wavetable_interpolate(int numSamplesIn, int numSamplesOut,
|
andrewm@0
|
122 float *tableIn, float *tableOut,
|
andrewm@0
|
123 float *sineTable, float sineMix);
|
andrewm@0
|
124
|
andrewm@0
|
125 inline uint16_t hysteresis_oscillator(uint16_t input, uint16_t risingThreshold,
|
andrewm@0
|
126 uint16_t fallingThreshold, bool *rising);
|
andrewm@0
|
127
|
andrewm@0
|
128 #ifdef DBOX_CAPE_TEST
|
andrewm@0
|
129 void render_capetest(int numMatrixFrames, int numAudioFrames, float *audioIn, float *audioOut,
|
andrewm@0
|
130 uint16_t *matrixIn, uint16_t *matrixOut);
|
andrewm@0
|
131 #endif
|
andrewm@0
|
132
|
andrewm@14
|
133 bool initialise_render(int numMatrixChannels, int numAudioChannels,
|
andrewm@14
|
134 int numMatrixFramesPerPeriod,
|
andrewm@14
|
135 int numAudioFramesPerPeriod,
|
andrewm@14
|
136 float matrixSampleRate, float audioSampleRate,
|
andrewm@14
|
137 void *userData) {
|
andrewm@0
|
138 int oscBankHopSize = *(int *)userData;
|
andrewm@0
|
139
|
andrewm@14
|
140 if(numMatrixChannels != 8) {
|
andrewm@14
|
141 printf("Error: D-Box needs matrix enabled with 8 channels.\n");
|
andrewm@14
|
142 return false;
|
andrewm@14
|
143 }
|
andrewm@14
|
144
|
andrewm@0
|
145 // Allocate two buffers for rendering oscillator bank samples
|
andrewm@0
|
146 // One will be used for writing in the background while the other is used for reading
|
andrewm@0
|
147 // on the audio thread. 8-byte alignment needed for the NEON code.
|
andrewm@14
|
148 if(posix_memalign((void **)&gOscillatorBuffer1, 8, oscBankHopSize * gNumAudioChannels * sizeof(float))) {
|
andrewm@0
|
149 printf("Error allocating render buffers\n");
|
andrewm@0
|
150 return false;
|
andrewm@0
|
151 }
|
andrewm@14
|
152 if(posix_memalign((void **)&gOscillatorBuffer2, 8, oscBankHopSize * gNumAudioChannels * sizeof(float))) {
|
andrewm@0
|
153 printf("Error allocating render buffers\n");
|
andrewm@0
|
154 return false;
|
andrewm@0
|
155 }
|
andrewm@0
|
156 gOscillatorBufferWrite = gOscillatorBuffer1;
|
andrewm@0
|
157 gOscillatorBufferRead = gOscillatorBuffer2;
|
andrewm@0
|
158
|
andrewm@14
|
159 memset(gOscillatorBuffer1, 0, oscBankHopSize * gNumAudioChannels * sizeof(float));
|
andrewm@14
|
160 memset(gOscillatorBuffer2, 0, oscBankHopSize * gNumAudioChannels * sizeof(float));
|
andrewm@0
|
161
|
andrewm@0
|
162 // Initialise the dynamic wavetable used by the oscillator bank
|
andrewm@0
|
163 // It should match the size of the static one already allocated in the OscillatorBank object
|
andrewm@0
|
164 // Don't forget a guard point at the end of the table
|
andrewm@0
|
165 gDynamicWavetableLength = gOscBanks[gCurrentOscBank]->lookupTableSize;
|
andrewm@0
|
166 if(posix_memalign((void **)&gDynamicWavetable, 8, (gDynamicWavetableLength + 1) * sizeof(float))) {
|
andrewm@0
|
167 printf("Error allocating wavetable\n");
|
andrewm@0
|
168 return false;
|
andrewm@0
|
169 }
|
andrewm@0
|
170
|
andrewm@0
|
171 gFeedbackOscillator.initialise(8192, 10.0, matrixSampleRate);
|
andrewm@0
|
172
|
andrewm@0
|
173 for(int n = 0; n < gDynamicWavetableLength + 1; n++)
|
andrewm@0
|
174 gDynamicWavetable[n] = 0;
|
andrewm@0
|
175
|
andrewm@0
|
176 // pitch
|
andrewm@0
|
177 float midPos = (float)65535/2.0;
|
andrewm@0
|
178 octaveSplitter = round((float)65535/(N_OCT));
|
andrewm@0
|
179 int numOfSemi = 12*N_OCT;
|
andrewm@0
|
180 int middleSemitone = 12*N_OCT/2;
|
andrewm@0
|
181 int lastSemitone = middleSemitone+numOfSemi/2;
|
andrewm@0
|
182 float inc = (float)65535/(N_OCT*12.0);
|
andrewm@0
|
183 int i = -1;
|
andrewm@0
|
184 for(int semi=middleSemitone; semi<=lastSemitone; semi++)
|
andrewm@0
|
185 semitones[semi] = ( midPos + (++i)*inc) + 0.5;
|
andrewm@0
|
186 i = 0;
|
andrewm@0
|
187 for(int semi=middleSemitone-1; semi>=0; semi--)
|
andrewm@0
|
188 semitones[semi] = ( midPos - (++i)*inc) + 0.5;
|
andrewm@0
|
189
|
andrewm@0
|
190 if(gAudioIn)
|
andrewm@0
|
191 audioInStatus = 1;
|
andrewm@0
|
192
|
andrewm@0
|
193 // filter
|
andrewm@0
|
194 blockSize = 2*gPeriodSize;
|
andrewm@0
|
195 filterState[0] = (ne10_float32_t *) NE10_MALLOC ((FILTER_TAP_NUM+blockSize-1) * sizeof (ne10_float32_t));
|
andrewm@0
|
196 filterState[1] = (ne10_float32_t *) NE10_MALLOC ((FILTER_TAP_NUM+blockSize-1) * sizeof (ne10_float32_t));
|
andrewm@0
|
197 filterIn[0] = (ne10_float32_t *) NE10_MALLOC (blockSize * sizeof (ne10_float32_t));
|
andrewm@0
|
198 filterIn[1] = (ne10_float32_t *) NE10_MALLOC (blockSize * sizeof (ne10_float32_t));
|
andrewm@0
|
199 filterOut[0] = (ne10_float32_t *) NE10_MALLOC (blockSize * sizeof (ne10_float32_t));
|
andrewm@0
|
200 filterOut[1] = (ne10_float32_t *) NE10_MALLOC (blockSize * sizeof (ne10_float32_t));
|
andrewm@0
|
201 ne10_fir_init_float(&filter[0], FILTER_TAP_NUM, filterTaps, filterState[0], blockSize);
|
andrewm@0
|
202 ne10_fir_init_float(&filter[1], FILTER_TAP_NUM, filterTaps, filterState[1], blockSize);
|
andrewm@0
|
203
|
andrewm@0
|
204 // peak outputs
|
andrewm@0
|
205 PeakBurst[0].setAttackRate(.00001 * matrixSampleRate);
|
andrewm@0
|
206 PeakBurst[1].setAttackRate(.00001 * matrixSampleRate);
|
andrewm@0
|
207 PeakBurst[0].setDecayRate(.5 * matrixSampleRate);
|
andrewm@0
|
208 PeakBurst[1].setDecayRate(.5 * matrixSampleRate);
|
andrewm@0
|
209 PeakBurst[0].setSustainLevel(0.0);
|
andrewm@0
|
210 PeakBurst[1].setSustainLevel(0.0);
|
andrewm@0
|
211
|
andrewm@0
|
212 // Initialise auxiliary tasks
|
andrewm@0
|
213 if((gMediumPriorityRender = createAuxiliaryTaskLoop(&render_medium_prio, 90, "dbox-calculation-medium")) == 0)
|
andrewm@0
|
214 return false;
|
andrewm@0
|
215 if((gLowPriorityRender = createAuxiliaryTaskLoop(&render_low_prio, 85, "dbox-calculation-low")) == 0)
|
andrewm@0
|
216 return false;
|
andrewm@0
|
217
|
andrewm@0
|
218 return true;
|
andrewm@0
|
219 }
|
andrewm@0
|
220
|
andrewm@0
|
221 void render(int numMatrixFrames, int numAudioFrames, float *audioIn, float *audioOut,
|
andrewm@0
|
222 uint16_t *matrixIn, uint16_t *matrixOut)
|
andrewm@0
|
223 {
|
andrewm@0
|
224 #ifdef DBOX_CAPE_TEST
|
andrewm@0
|
225 render_capetest(numMatrixFrames, numAudioFrames, audioIn, audioOut, matrixIn, matrixOut);
|
andrewm@0
|
226 #else
|
andrewm@0
|
227 if(gOscBanks[gCurrentOscBank]->state==bank_toreset)
|
andrewm@0
|
228 gOscBanks[gCurrentOscBank]->resetOscillators();
|
andrewm@0
|
229
|
andrewm@0
|
230 if(gOscBanks[gCurrentOscBank]->state==bank_playing)
|
andrewm@0
|
231 {
|
andrewm@14
|
232 assert(gNumAudioChannels == 2);
|
andrewm@0
|
233
|
andrewm@0
|
234 #ifdef OLD_OSCBANK
|
andrewm@14
|
235 memset(audioOut, 0, numAudioFrames * gNumAudioChannels * sizeof(float));
|
andrewm@0
|
236
|
andrewm@0
|
237 /* Render the oscillator bank. The oscillator bank function is written in NEON assembly
|
andrewm@0
|
238 * and it strips out all extra checks, so find out in advance whether we can render a whole
|
andrewm@0
|
239 * block or whether the frame will increment in the middle of this buffer.
|
andrewm@0
|
240 */
|
andrewm@0
|
241
|
andrewm@0
|
242 int framesRemaining = numAudioFrames;
|
andrewm@0
|
243 float *audioOutWithOffset = audioOut;
|
andrewm@0
|
244
|
andrewm@0
|
245 while(framesRemaining > 0) {
|
andrewm@0
|
246 if(gOscBanks[gCurrentOscBank]->hopCounter >= framesRemaining) {
|
andrewm@0
|
247 /* More frames left in this hop than we need this time. Render and finish */
|
andrewm@0
|
248 oscillator_bank_neon(framesRemaining, audioOutWithOffset,
|
andrewm@0
|
249 gOscBanks[gCurrentOscBank]->actPartNum, gOscBanks[gCurrentOscBank]->lookupTableSize,
|
andrewm@0
|
250 gOscBanks[gCurrentOscBank]->oscillatorPhases, gOscBanks[gCurrentOscBank]->oscillatorNormFrequencies,
|
andrewm@0
|
251 gOscBanks[gCurrentOscBank]->oscillatorAmplitudes,
|
andrewm@0
|
252 gOscBanks[gCurrentOscBank]->oscillatorNormFreqDerivatives,
|
andrewm@0
|
253 gOscBanks[gCurrentOscBank]->oscillatorAmplitudeDerivatives,
|
andrewm@0
|
254 gDynamicWavetable/*gOscBanks[gCurrentOscBank]->lookupTable*/);
|
andrewm@0
|
255 gOscBanks[gCurrentOscBank]->hopCounter -= framesRemaining;
|
andrewm@0
|
256 if(gOscBanks[gCurrentOscBank]->hopCounter <= 0)
|
andrewm@0
|
257 gOscBanks[gCurrentOscBank]->nextHop();
|
andrewm@0
|
258 framesRemaining = 0;
|
andrewm@0
|
259 }
|
andrewm@0
|
260 else {
|
andrewm@0
|
261 /* More frames to render than are left in this hop. Render and decrement the
|
andrewm@0
|
262 * number of remaining frames; then advance to the next oscillator frame.
|
andrewm@0
|
263 */
|
andrewm@0
|
264 oscillator_bank_neon(gOscBanks[gCurrentOscBank]->hopCounter, audioOutWithOffset,
|
andrewm@0
|
265 gOscBanks[gCurrentOscBank]->actPartNum, gOscBanks[gCurrentOscBank]->lookupTableSize,
|
andrewm@0
|
266 gOscBanks[gCurrentOscBank]->oscillatorPhases, gOscBanks[gCurrentOscBank]->oscillatorNormFrequencies,
|
andrewm@0
|
267 gOscBanks[gCurrentOscBank]->oscillatorAmplitudes,
|
andrewm@0
|
268 gOscBanks[gCurrentOscBank]->oscillatorNormFreqDerivatives,
|
andrewm@0
|
269 gOscBanks[gCurrentOscBank]->oscillatorAmplitudeDerivatives,
|
andrewm@0
|
270 gDynamicWavetable/*gOscBanks[gCurrentOscBank]->lookupTable*/);
|
andrewm@0
|
271 framesRemaining -= gOscBanks[gCurrentOscBank]->hopCounter;
|
andrewm@14
|
272 audioOutWithOffset += gNumAudioChannels * gOscBanks[gCurrentOscBank]->hopCounter;
|
andrewm@0
|
273 gOscBanks[gCurrentOscBank]->sampleCount += gOscBanks[gCurrentOscBank]->hopCounter;
|
andrewm@0
|
274 gOscBanks[gCurrentOscBank]->nextHop();
|
andrewm@0
|
275 }
|
andrewm@0
|
276 }
|
andrewm@0
|
277 #else
|
andrewm@0
|
278 for(int n = 0; n < numAudioFrames; n++) {
|
andrewm@0
|
279 audioOut[2*n] = gOscillatorBufferRead[gOscillatorBufferReadPointer++]+audioIn[2*n]*audioInStatus;
|
andrewm@0
|
280 audioOut[2*n + 1] = gOscillatorBufferRead[gOscillatorBufferReadPointer++]+audioIn[2*n+1]*audioInStatus;
|
andrewm@0
|
281
|
andrewm@0
|
282 filterIn[0][n] = fabs(audioIn[2*n]); // rectify for peak detection in 1
|
andrewm@0
|
283 filterIn[1][n] = fabs(audioIn[2*n+1]); // rectify for peak detection in 2
|
andrewm@0
|
284
|
andrewm@0
|
285 /* FIXME why doesn't this work? */
|
andrewm@0
|
286 /*
|
andrewm@0
|
287 if(gOscillatorBufferReadPointer == gOscillatorBufferCurrentSize/2) {
|
andrewm@0
|
288 gOscillatorNeedsRender = true;
|
andrewm@0
|
289 scheduleAuxiliaryTask(gLowPriorityRender);
|
andrewm@0
|
290 } */
|
andrewm@0
|
291
|
andrewm@0
|
292 if(gOscillatorBufferReadPointer >= gOscillatorBufferReadCurrentSize) {
|
andrewm@0
|
293 // Finished reading from the buffer: swap to the next buffer
|
andrewm@0
|
294 if(gOscillatorBufferRead == gOscillatorBuffer1) {
|
andrewm@0
|
295 gOscillatorBufferRead = gOscillatorBuffer2;
|
andrewm@0
|
296 gOscillatorBufferWrite = gOscillatorBuffer1;
|
andrewm@0
|
297 }
|
andrewm@0
|
298 else {
|
andrewm@0
|
299 gOscillatorBufferRead = gOscillatorBuffer1;
|
andrewm@0
|
300 gOscillatorBufferWrite = gOscillatorBuffer2;
|
andrewm@0
|
301 }
|
andrewm@0
|
302
|
andrewm@0
|
303 // New buffer size is whatever finished writing last hop
|
andrewm@0
|
304 gOscillatorBufferReadCurrentSize = gOscillatorBufferWriteCurrentSize;
|
andrewm@0
|
305 gOscillatorBufferReadPointer = 0;
|
andrewm@0
|
306
|
andrewm@0
|
307 gOscillatorNeedsRender = true;
|
andrewm@0
|
308 scheduleAuxiliaryTask(gMediumPriorityRender);
|
andrewm@0
|
309 }
|
andrewm@0
|
310 }
|
andrewm@0
|
311 #endif
|
andrewm@0
|
312 }
|
andrewm@0
|
313 else
|
andrewm@0
|
314 {
|
andrewm@0
|
315 for(int n = 0; n < numAudioFrames; n++) {
|
andrewm@0
|
316 audioOut[2*n] = audioIn[2*n]*audioInStatus;
|
andrewm@0
|
317 audioOut[2*n + 1] = audioIn[2*n+1]*audioInStatus;
|
andrewm@0
|
318
|
andrewm@0
|
319 filterIn[0][n] = fabs(audioIn[2*n]); // rectify for peak detection in 1
|
andrewm@0
|
320 filterIn[1][n] = fabs(audioIn[2*n+1]); // rectify for peak detection in 2
|
andrewm@0
|
321 }
|
andrewm@0
|
322 }
|
andrewm@0
|
323
|
andrewm@0
|
324 // low pass filter audio in 1 and 2 for peak detection
|
andrewm@0
|
325 ne10_fir_float_neon(&filter[0], filterIn[0], filterOut[0], blockSize);
|
andrewm@0
|
326 ne10_fir_float_neon(&filter[1], filterIn[1], filterOut[1], blockSize);
|
andrewm@0
|
327
|
andrewm@0
|
328 for(int n = 0; n < numMatrixFrames; n++) {
|
andrewm@0
|
329
|
andrewm@0
|
330
|
andrewm@0
|
331 /* Matrix Out 0, In 0
|
andrewm@0
|
332 *
|
andrewm@0
|
333 * CV loop
|
andrewm@0
|
334 * Controls pitch of sound
|
andrewm@0
|
335 */
|
andrewm@0
|
336 int touchPosInt = gSensor0LatestTouchPos * 65536.0;
|
andrewm@0
|
337 if(touchPosInt < 0) touchPosInt = 0;
|
andrewm@0
|
338 if(touchPosInt > 65535) touchPosInt = 65535;
|
andrewm@0
|
339 matrixOut[n*8 + DAC_PIN0] = touchPosInt;
|
andrewm@0
|
340
|
andrewm@0
|
341 gPitchLatestInput = matrixIn[n*8 + ADC_PIN0];
|
andrewm@0
|
342
|
andrewm@0
|
343
|
andrewm@0
|
344 /* Matrix Out 7
|
andrewm@0
|
345 *
|
andrewm@0
|
346 * Loop feedback with Matrix In 0
|
andrewm@0
|
347 * Controls discreet pitch
|
andrewm@0
|
348 */
|
andrewm@0
|
349 float deltaTarget = 0;
|
andrewm@0
|
350 int semitoneIndex = 0;
|
andrewm@0
|
351 if(gSensor0LatestTouchNum>0)
|
andrewm@0
|
352 {
|
andrewm@0
|
353 // current pitch is gPitchLatestInput, already retrieved
|
andrewm@0
|
354 semitoneIndex = ( ( (float)gPitchLatestInput / 65535)*12*N_OCT )+0.5; // closest semitone
|
andrewm@0
|
355 deltaTarget = (semitones[semitoneIndex]-gPitchLatestInput); // delta between pitch and target
|
andrewm@0
|
356 deltaTouch += deltaTarget*deltaWeightI; // update feedback [previous + current]
|
andrewm@0
|
357 }
|
andrewm@0
|
358 else
|
andrewm@0
|
359 deltaTouch = 0;
|
andrewm@0
|
360
|
andrewm@0
|
361 int nextOut = touchPosInt + deltaTarget*deltaWeightP + deltaTouch; // add feedback to touch -> next out
|
andrewm@0
|
362 if(nextOut < 0) nextOut = 0; // clamp
|
andrewm@0
|
363 if(nextOut > 65535) nextOut = 65535; // clamp
|
andrewm@0
|
364 matrixOut[n*8 + DAC_PIN7] = nextOut; // send next nextOut
|
andrewm@0
|
365
|
andrewm@0
|
366
|
andrewm@0
|
367 /*
|
andrewm@0
|
368 * Matrix Out 1, In 1
|
andrewm@0
|
369 *
|
andrewm@0
|
370 * Hysteresis (comparator) oscillator
|
andrewm@0
|
371 * Controls speed of playback
|
andrewm@0
|
372 */
|
andrewm@0
|
373 bool wasRising = gSpeedHysteresisOscillatorRising;
|
andrewm@0
|
374 matrixOut[n*8 + DAC_PIN1] = hysteresis_oscillator(matrixIn[n*8 + ADC_PIN1], 48000, 16000, &gSpeedHysteresisOscillatorRising);
|
andrewm@0
|
375
|
andrewm@0
|
376 // Find interval of zero crossing
|
andrewm@0
|
377 if(wasRising && !gSpeedHysteresisOscillatorRising) {
|
andrewm@0
|
378 int interval = gMatrixSampleCount - gSpeedHysteresisLastTrigger;
|
andrewm@0
|
379
|
andrewm@0
|
380 // Interval since last trigger will be the new hop size; calculate to set speed
|
andrewm@0
|
381 if(interval < 1)
|
andrewm@0
|
382 interval = 1;
|
andrewm@0
|
383 //float speed = (float)gOscBanks[gCurrentOscBank]->getHopSize() / (float)interval;
|
andrewm@0
|
384 float speed = 144.0 / interval; // Normalise to a fixed expected speed
|
andrewm@0
|
385 gOscBanks[gCurrentOscBank]->setSpeed(speed);
|
andrewm@0
|
386
|
andrewm@0
|
387 gSpeedHysteresisLastTrigger = gMatrixSampleCount;
|
andrewm@0
|
388 }
|
andrewm@0
|
389
|
andrewm@0
|
390 /*
|
andrewm@0
|
391 * Matrix Out 2, In 2
|
andrewm@0
|
392 *
|
andrewm@0
|
393 * Feedback (phase shift) oscillator
|
andrewm@0
|
394 * Controls wavetable used for oscillator bank
|
andrewm@0
|
395 */
|
andrewm@0
|
396
|
andrewm@0
|
397 int tableLength = gFeedbackOscillator.process(matrixIn[n*8 + ADC_PIN2], &matrixOut[n*8 + DAC_PIN2]);
|
andrewm@0
|
398 if(tableLength != 0) {
|
andrewm@0
|
399 gFeedbackOscillatorTableLength = tableLength;
|
andrewm@0
|
400 gFeedbackOscillatorTable = gFeedbackOscillator.wavetable();
|
andrewm@0
|
401 gDynamicWavetableNeedsRender = true;
|
andrewm@0
|
402 scheduleAuxiliaryTask(gLowPriorityRender);
|
andrewm@0
|
403 }
|
andrewm@0
|
404
|
andrewm@0
|
405 /*
|
andrewm@0
|
406 * Matrix Out 3, In 3
|
andrewm@0
|
407 *
|
andrewm@0
|
408 * CV loop with delay for time alignment
|
andrewm@0
|
409 * Touch positions from sensor 1
|
andrewm@0
|
410 * Change every 32 samples (ca. 1.5 ms)
|
andrewm@0
|
411 */
|
andrewm@0
|
412 volatile int touchCount = gSensor1LatestTouchCount;
|
andrewm@0
|
413 if(touchCount == 0)
|
andrewm@0
|
414 matrixOut[n*8 + DAC_PIN3] = 0;
|
andrewm@0
|
415 else {
|
andrewm@0
|
416 int touchIndex = (gMatrixSampleCount >> 5) % touchCount;
|
andrewm@0
|
417 matrixOut[n*8 + DAC_PIN3] = gSensor1LatestTouchPos[touchIndex] * 56000.0f;
|
andrewm@0
|
418 if(touchIndex != gSensor1LastTouchIndex) {
|
andrewm@0
|
419 // Just changed to a new touch output. Reset the counter.
|
andrewm@0
|
420 // It will take 2*matrixFrames samples for this output to come back to the
|
andrewm@0
|
421 // ADC input. But we also want to read near the end of the 32 sample block;
|
andrewm@0
|
422 // let's say 24 samples into it.
|
andrewm@0
|
423
|
andrewm@0
|
424 // FIXME this won't work for p > 2
|
andrewm@0
|
425 gSensor1InputDelayCounter = 24 + 2*numMatrixFrames;
|
andrewm@0
|
426 gSensor1InputIndex = touchIndex;
|
andrewm@0
|
427 }
|
andrewm@0
|
428 gSensor1LastTouchIndex = touchIndex;
|
andrewm@0
|
429 }
|
andrewm@0
|
430
|
andrewm@0
|
431 if(gSensor1InputDelayCounter-- >= 0 && touchCount > 0) {
|
andrewm@0
|
432 gSensor1MatrixTouchPos[gSensor1InputIndex] = (float)matrixIn[n*8 + ADC_PIN3] / 65536.0f;
|
andrewm@0
|
433 }
|
andrewm@0
|
434
|
andrewm@0
|
435 /* Matrix Out 4
|
andrewm@0
|
436 *
|
andrewm@0
|
437 * Sensor 1 last pos
|
andrewm@0
|
438 */
|
andrewm@0
|
439 touchPosInt = gSensor1LatestTouchPos[gSensor1LatestTouchIndex] * 65536.0;
|
andrewm@0
|
440 if(touchPosInt < 0) touchPosInt = 0;
|
andrewm@0
|
441 if(touchPosInt > 65535) touchPosInt = 65535;
|
andrewm@0
|
442 matrixOut[n*8 + DAC_PIN4] = touchPosInt;
|
andrewm@0
|
443
|
andrewm@0
|
444 /* Matrix In 4
|
andrewm@0
|
445 *
|
andrewm@0
|
446 * Loop points selector
|
andrewm@0
|
447 */
|
andrewm@0
|
448 gLoopPointsInputBuffer[gLoopPointsInputBufferPointer++] = matrixIn[n*8 + ADC_PIN4];
|
andrewm@0
|
449 if(gLoopPointsInputBufferPointer >= gLoopPointsInputBufferSize) {
|
andrewm@0
|
450 // Find min and max values
|
andrewm@0
|
451 uint16_t loopMax = 0, loopMin = 65535;
|
andrewm@0
|
452 for(int i = 0; i < gLoopPointsInputBufferSize; i++) {
|
andrewm@0
|
453 if(gLoopPointsInputBuffer[i] < loopMin)
|
andrewm@0
|
454 loopMin = gLoopPointsInputBuffer[i];
|
andrewm@0
|
455 if(gLoopPointsInputBuffer[i] > loopMax/* && gLoopPointsInputBuffer[i] != 65535*/)
|
andrewm@0
|
456 loopMax = gLoopPointsInputBuffer[i];
|
andrewm@0
|
457 }
|
andrewm@0
|
458
|
andrewm@0
|
459 if(loopMin >= loopMax)
|
andrewm@0
|
460 loopMax = loopMin;
|
andrewm@0
|
461
|
andrewm@0
|
462 gLoopPointMax = loopMax;
|
andrewm@0
|
463 gLoopPointMin = loopMin;
|
andrewm@0
|
464 gLoopPointsInputBufferPointer = 0;
|
andrewm@0
|
465 }
|
andrewm@0
|
466
|
andrewm@0
|
467 /* Matrix Out 5
|
andrewm@0
|
468 *
|
andrewm@0
|
469 * Audio In 1 peak detection and peak burst output
|
andrewm@0
|
470 */
|
andrewm@0
|
471
|
andrewm@0
|
472 filterOut[0][n*2+1] *= filterGain;
|
andrewm@0
|
473 float burstOut = PeakBurst[0].getOutput();
|
andrewm@0
|
474 if( burstOut < 0.1)
|
andrewm@0
|
475 {
|
andrewm@0
|
476 if( (prevFiltered[0]>=peakThresh) && (prevFiltered[0]>=filterOut[0][n*2+1]) )
|
andrewm@0
|
477 {
|
andrewm@0
|
478 peak[0] = prevFiltered[0];
|
andrewm@0
|
479 PeakBurst[0].gate(1);
|
andrewm@0
|
480 }
|
andrewm@0
|
481 }
|
andrewm@0
|
482
|
andrewm@0
|
483 PeakBurst[0].process(1);
|
andrewm@0
|
484
|
andrewm@0
|
485 int convAudio = burstOut*peak[0]*65535;
|
andrewm@0
|
486 matrixOut[n*8 + DAC_PIN5] = convAudio;
|
andrewm@0
|
487 prevFiltered[0] = filterOut[0][n*2+1];
|
andrewm@0
|
488 if(prevFiltered[0]>1)
|
andrewm@0
|
489 prevFiltered[0] = 1;
|
andrewm@0
|
490
|
andrewm@0
|
491 /* Matrix In 5
|
andrewm@0
|
492 *
|
andrewm@0
|
493 * Dissonance, via changing frequency motion of partials
|
andrewm@0
|
494 */
|
andrewm@0
|
495 float amount = (float)matrixIn[n*8 + ADC_PIN5] / 65536.0f;
|
andrewm@0
|
496 gOscBanks[gCurrentOscBank]->freqMovement = 1-amount;
|
andrewm@0
|
497
|
andrewm@0
|
498
|
andrewm@0
|
499
|
andrewm@0
|
500
|
andrewm@0
|
501 /* Matrix Out 6
|
andrewm@0
|
502 *
|
andrewm@0
|
503 * Audio In 2 peak detection and peak burst output
|
andrewm@0
|
504 */
|
andrewm@0
|
505
|
andrewm@0
|
506 filterOut[1][n*2+1] *= filterGain;
|
andrewm@0
|
507 burstOut = PeakBurst[1].getOutput();
|
andrewm@0
|
508 if( burstOut < 0.1)
|
andrewm@0
|
509 {
|
andrewm@0
|
510 if( (prevFiltered[1]>=peakThresh) && (prevFiltered[1]>=filterOut[1][n*2+1]) )
|
andrewm@0
|
511 {
|
andrewm@0
|
512 peak[1] = prevFiltered[1];
|
andrewm@0
|
513 PeakBurst[1].gate(1);
|
andrewm@0
|
514 }
|
andrewm@0
|
515 }
|
andrewm@0
|
516
|
andrewm@0
|
517 PeakBurst[1].process(1);
|
andrewm@0
|
518
|
andrewm@0
|
519 convAudio = burstOut*peak[1]*65535;
|
andrewm@0
|
520 matrixOut[n*8 + DAC_PIN6] = convAudio;
|
andrewm@0
|
521 prevFiltered[1] = filterOut[1][n*2+1];
|
andrewm@0
|
522 if(prevFiltered[1]>1)
|
andrewm@0
|
523 prevFiltered[1] = 1;
|
andrewm@0
|
524
|
andrewm@0
|
525 /* Matrix In 6
|
andrewm@0
|
526 *
|
andrewm@0
|
527 * Sound selector
|
andrewm@0
|
528 */
|
andrewm@0
|
529 if(!gIsLoading) {
|
andrewm@0
|
530 // Use hysteresis to avoid jumping back and forth between sounds
|
andrewm@0
|
531 if(gOscBanks.size() > 1) {
|
andrewm@0
|
532 int input = matrixIn[n*8 + ADC_PIN6];
|
andrewm@0
|
533 const int hystValue = 16000;
|
andrewm@0
|
534
|
andrewm@0
|
535 int upHysteresisValue = ((gCurrentOscBank + 1) * 65536 + hystValue) / gOscBanks.size();
|
andrewm@0
|
536 int downHysteresisValue = (gCurrentOscBank * 65536 - hystValue) / gOscBanks.size();
|
andrewm@0
|
537
|
andrewm@0
|
538 if(input > upHysteresisValue || input < downHysteresisValue) {
|
andrewm@0
|
539 gNextOscBank = input * gOscBanks.size() / 65536;
|
andrewm@0
|
540 if(gNextOscBank < 0)
|
andrewm@0
|
541 gNextOscBank = 0;
|
andrewm@0
|
542 if((unsigned)gNextOscBank >= gOscBanks.size())
|
andrewm@0
|
543 gNextOscBank = gOscBanks.size() - 1;
|
andrewm@0
|
544 }
|
andrewm@0
|
545 }
|
andrewm@0
|
546 }
|
andrewm@0
|
547
|
andrewm@0
|
548 /*
|
andrewm@0
|
549 * Matrix In 7
|
andrewm@0
|
550 *
|
andrewm@0
|
551 * FSR from primary touch sensor
|
andrewm@0
|
552 * Value ranges from 0-1799
|
andrewm@0
|
553 */
|
andrewm@0
|
554 gLastFSRValue = matrixIn[n*8 + ADC_PIN7] * (1799.0 / 65535.0);
|
andrewm@0
|
555 //gLastFSRValue = 1799 - matrixIn[n*8 + ADC_PIN7] * (1799.0 / 65535.0);
|
andrewm@0
|
556 //dbox_printf("%i\n",gLastFSRValue);
|
andrewm@0
|
557
|
andrewm@0
|
558 gMatrixSampleCount++;
|
andrewm@0
|
559 }
|
andrewm@0
|
560
|
andrewm@0
|
561 #endif /* DBOX_CAPE_TEST */
|
andrewm@0
|
562 }
|
andrewm@0
|
563
|
andrewm@0
|
564 // Medium-priority render function used for audio hop calculations
|
andrewm@0
|
565 void render_medium_prio()
|
andrewm@0
|
566 {
|
andrewm@0
|
567
|
andrewm@0
|
568 if(gOscillatorNeedsRender) {
|
andrewm@0
|
569 gOscillatorNeedsRender = false;
|
andrewm@0
|
570
|
andrewm@0
|
571 /* Render one frame into the write buffer */
|
andrewm@14
|
572 memset(gOscillatorBufferWrite, 0, gOscBanks[gCurrentOscBank]->hopCounter * gNumAudioChannels * sizeof(float));
|
andrewm@0
|
573
|
andrewm@0
|
574 oscillator_bank_neon(gOscBanks[gCurrentOscBank]->hopCounter, gOscillatorBufferWrite,
|
andrewm@0
|
575 gOscBanks[gCurrentOscBank]->actPartNum, gOscBanks[gCurrentOscBank]->lookupTableSize,
|
andrewm@0
|
576 gOscBanks[gCurrentOscBank]->oscillatorPhases, gOscBanks[gCurrentOscBank]->oscillatorNormFrequencies,
|
andrewm@0
|
577 gOscBanks[gCurrentOscBank]->oscillatorAmplitudes,
|
andrewm@0
|
578 gOscBanks[gCurrentOscBank]->oscillatorNormFreqDerivatives,
|
andrewm@0
|
579 gOscBanks[gCurrentOscBank]->oscillatorAmplitudeDerivatives,
|
andrewm@0
|
580 /*gOscBanks[gCurrentOscBank]->lookupTable*/gDynamicWavetable);
|
andrewm@0
|
581
|
andrewm@14
|
582 gOscillatorBufferWriteCurrentSize = gOscBanks[gCurrentOscBank]->hopCounter * gNumAudioChannels;
|
andrewm@0
|
583
|
andrewm@0
|
584 /* Update the pitch right before the hop
|
andrewm@0
|
585 * Total CV range +/- N_OCT octaves
|
andrewm@0
|
586 */
|
andrewm@0
|
587 float pitch = (float)gPitchLatestInput / octaveSplitter - N_OCT/2;
|
andrewm@0
|
588 //gOscBanks[gCurrentOscBank]->pitchMultiplier = powf(2.0f, pitch);
|
andrewm@0
|
589 gOscBanks[gCurrentOscBank]->pitchMultiplier = pow(2.0f, pitch);
|
andrewm@0
|
590
|
andrewm@0
|
591 #ifdef FIXME_LATER // This doesn't work very well yet
|
andrewm@0
|
592 gOscBanks[gCurrentOscBank]->filterNum = gSensor1LatestTouchCount;
|
andrewm@0
|
593 float freqScaler = gOscBanks[gCurrentOscBank]->getFrequencyScaler();
|
andrewm@0
|
594 for(int i=0; i < gOscBanks[gCurrentOscBank]->filterNum; i++)
|
andrewm@0
|
595 {
|
andrewm@0
|
596 // touch pos is linear but freqs are log
|
andrewm@0
|
597 gOscBanks[gCurrentOscBank]->filterFreqs[i] = ((expf(gSensor1MatrixTouchPos[i]*4)-1)/(expf(4)-1))*gOscBanks[gCurrentOscBank]->filterMaxF*freqScaler;
|
andrewm@0
|
598 gOscBanks[gCurrentOscBank]->filterQ[i] = gSensor1LatestTouchSizes[i];
|
andrewm@0
|
599 if(gOscBanks[gCurrentOscBank]->filterFreqs[i]>500*freqScaler)
|
andrewm@0
|
600 gOscBanks[gCurrentOscBank]->filterPadding[i] = 1+100000*( (gOscBanks[gCurrentOscBank]->filterFreqs[i]-500*freqScaler)/(gOscBanks[gCurrentOscBank]->filterMaxF-500)*freqScaler );
|
andrewm@0
|
601 else
|
andrewm@0
|
602 gOscBanks[gCurrentOscBank]->filterPadding[i] = 1;
|
andrewm@0
|
603 }
|
andrewm@0
|
604 #endif
|
andrewm@0
|
605
|
andrewm@0
|
606 RTIME ticks = rt_timer_read();
|
andrewm@0
|
607 SRTIME ns = rt_timer_tsc2ns(ticks);
|
andrewm@0
|
608 SRTIME delta = ns-prevChangeNs;
|
andrewm@0
|
609
|
andrewm@0
|
610 // switch to next bank cannot be too frequent, to avoid seg fault! [for example sef fault happens when removing both VDD and GND from breadboard]
|
andrewm@0
|
611 if(gNextOscBank != gCurrentOscBank && delta>100000000) {
|
andrewm@0
|
612
|
andrewm@0
|
613 /*printf("ticks %llu\n", (unsigned long long)ticks);
|
andrewm@0
|
614 printf("ns %llu\n", (unsigned long long)ns);
|
andrewm@0
|
615 printf("prevChangeNs %llu\n", (unsigned long long)prevChangeNs);
|
andrewm@0
|
616 printf("-------------------------->%llud\n", (unsigned long long)(ns-prevChangeNs));*/
|
andrewm@0
|
617
|
andrewm@0
|
618 prevChangeNs = ns;
|
andrewm@0
|
619 dbox_printf("Changing to bank %d...\n", gNextOscBank);
|
andrewm@0
|
620 if(gOscBanks[gCurrentOscBank]->state==bank_playing){
|
andrewm@0
|
621 gOscBanks[gCurrentOscBank]->stop();
|
andrewm@0
|
622 }
|
andrewm@0
|
623
|
andrewm@0
|
624 gCurrentOscBank = gNextOscBank;
|
andrewm@0
|
625 gOscBanks[gCurrentOscBank]->hopNumTh = 0;
|
andrewm@0
|
626 }
|
andrewm@0
|
627 else {
|
andrewm@0
|
628 /* Advance to the next oscillator frame */
|
andrewm@0
|
629 gOscBanks[gCurrentOscBank]->nextHop();
|
andrewm@0
|
630 }
|
andrewm@0
|
631 }
|
andrewm@0
|
632 }
|
andrewm@0
|
633
|
andrewm@0
|
634 // Lower-priority render function which performs matrix calculations
|
andrewm@0
|
635 // State should be transferred in via global variables
|
andrewm@0
|
636 void render_low_prio()
|
andrewm@0
|
637 {
|
andrewm@0
|
638 gPRU->setGPIOTestPin();
|
andrewm@0
|
639 if(gDynamicWavetableNeedsRender) {
|
andrewm@0
|
640 // Find amplitude of wavetable
|
andrewm@0
|
641 float meanAmplitude = 0;
|
andrewm@0
|
642 float sineMix;
|
andrewm@0
|
643
|
andrewm@0
|
644 for(int i = 0; i < gFeedbackOscillatorTableLength; i++) {
|
andrewm@0
|
645 //meanAmplitude += fabsf(gFeedbackOscillatorTable[i]);
|
andrewm@0
|
646 meanAmplitude += fabs(gFeedbackOscillatorTable[i]);
|
andrewm@0
|
647 }
|
andrewm@0
|
648 meanAmplitude /= (float)gFeedbackOscillatorTableLength;
|
andrewm@0
|
649
|
andrewm@0
|
650 if(meanAmplitude > 0.35)
|
andrewm@0
|
651 sineMix = 0;
|
andrewm@0
|
652 else
|
andrewm@0
|
653 sineMix = (.35 - meanAmplitude) / .35;
|
andrewm@0
|
654
|
andrewm@0
|
655 //dbox_printf("amp %f mix %f\n", meanAmplitude, sineMix);
|
andrewm@0
|
656
|
andrewm@0
|
657 // Copy to main wavetable
|
andrewm@0
|
658 wavetable_interpolate(gFeedbackOscillatorTableLength, gDynamicWavetableLength,
|
andrewm@0
|
659 gFeedbackOscillatorTable, gDynamicWavetable,
|
andrewm@0
|
660 gOscBanks[gCurrentOscBank]->lookupTable, sineMix);
|
andrewm@0
|
661 }
|
andrewm@0
|
662
|
andrewm@0
|
663 if(gLoopPointMin >= 60000 && gLoopPointMax >= 60000) {
|
andrewm@0
|
664 // KLUDGE!
|
andrewm@0
|
665 if(gCurrentOscBank == 0)
|
andrewm@0
|
666 gOscBanks[gCurrentOscBank]->setLoopHops(50, ((float)gOscBanks[gCurrentOscBank]->getLastHop() * 0.6) - 1);
|
andrewm@0
|
667 else
|
andrewm@0
|
668 gOscBanks[gCurrentOscBank]->setLoopHops(5, ((float)gOscBanks[gCurrentOscBank]->getLastHop() * 0.7) - 1);
|
andrewm@0
|
669 }
|
andrewm@0
|
670 else {
|
andrewm@0
|
671 float normLoopPointMin = (float)gLoopPointMin * gOscBanks[gCurrentOscBank]->getLastHop() / 65535.0;
|
andrewm@0
|
672 float normLoopPointMax = (float)gLoopPointMax * gOscBanks[gCurrentOscBank]->getLastHop() / 65535.0;
|
andrewm@0
|
673
|
andrewm@0
|
674 int intLoopPointMin = normLoopPointMin;
|
andrewm@0
|
675 if(intLoopPointMin < 1)
|
andrewm@0
|
676 intLoopPointMin = 1;
|
andrewm@0
|
677 int intLoopPointMax = normLoopPointMax;
|
andrewm@0
|
678 if(intLoopPointMax <= intLoopPointMin)
|
andrewm@0
|
679 intLoopPointMax = intLoopPointMin + 1;
|
andrewm@0
|
680 if(intLoopPointMax > gOscBanks[gCurrentOscBank]->getLastHop() - 1)
|
andrewm@0
|
681 intLoopPointMax = gOscBanks[gCurrentOscBank]->getLastHop() - 1;
|
andrewm@0
|
682
|
andrewm@0
|
683 //dbox_printf("Loop points %d-%d / %d-%d\n", gLoopPointMin, gLoopPointMax, intLoopPointMin, intLoopPointMax);
|
andrewm@0
|
684
|
andrewm@0
|
685 /* WORKS, jsut need to fix the glitch when jumps!
|
andrewm@0
|
686 * *int currentHop = gOscBanks[gCurrentOscBank]->getCurrentHop();
|
andrewm@0
|
687 if(currentHop < intLoopPointMin -1 )
|
andrewm@0
|
688 gOscBanks[gCurrentOscBank]->setJumpHop(intLoopPointMin + 1);
|
andrewm@0
|
689 else if(currentHop > intLoopPointMax + 1)
|
andrewm@0
|
690 gOscBanks[gCurrentOscBank]->setJumpHop(intLoopPointMax - 1);*/
|
andrewm@0
|
691 gOscBanks[gCurrentOscBank]->setLoopHops(intLoopPointMin, intLoopPointMax);
|
andrewm@0
|
692 }
|
andrewm@0
|
693
|
andrewm@0
|
694 if(gIsLoading)
|
andrewm@0
|
695 gStatusLED.blink(25, 75); // Blink quickly until load finished
|
andrewm@0
|
696 else
|
andrewm@0
|
697 gStatusLED.blink(250 / gOscBanks[gCurrentOscBank]->getSpeed(), 250 / gOscBanks[gCurrentOscBank]->getSpeed());
|
andrewm@0
|
698 gPRU->clearGPIOTestPin();
|
andrewm@0
|
699
|
andrewm@0
|
700 // static int counter = 32;
|
andrewm@0
|
701 // if(--counter == 0) {
|
andrewm@0
|
702 // for(int i = 0; i < gLoopPointsInputBufferSize; i++) {
|
andrewm@0
|
703 // dbox_printf("%d ", gLoopPointsInputBuffer[i]);
|
andrewm@0
|
704 // if(i % 32 == 31)
|
andrewm@0
|
705 // dbox_printf("\n");
|
andrewm@0
|
706 // }
|
andrewm@0
|
707 // dbox_printf("\n\n");
|
andrewm@0
|
708 // counter = 32;
|
andrewm@0
|
709 // }
|
andrewm@0
|
710
|
andrewm@0
|
711 //dbox_printf("min %d max %d\n", gLoopPointMin, gLoopPointMax);
|
andrewm@0
|
712 }
|
andrewm@0
|
713
|
andrewm@0
|
714 // Clean up at the end of render
|
andrewm@0
|
715 void cleanup_render()
|
andrewm@0
|
716 {
|
andrewm@0
|
717 free(gOscillatorBuffer1);
|
andrewm@0
|
718 free(gOscillatorBuffer2);
|
andrewm@0
|
719 free(gDynamicWavetable);
|
andrewm@0
|
720 }
|
andrewm@0
|
721
|
andrewm@0
|
722 // Interpolate one wavetable into another. The output size
|
andrewm@0
|
723 // does not include the guard point at the end which will be identical
|
andrewm@0
|
724 // to the first point
|
andrewm@0
|
725 void wavetable_interpolate(int numSamplesIn, int numSamplesOut,
|
andrewm@0
|
726 float *tableIn, float *tableOut,
|
andrewm@0
|
727 float *sineTable, float sineMix)
|
andrewm@0
|
728 {
|
andrewm@0
|
729 float fractionalScaler = (float)numSamplesIn / (float)numSamplesOut;
|
andrewm@0
|
730
|
andrewm@0
|
731 for(int k = 0; k < numSamplesOut; k++) {
|
andrewm@0
|
732 float fractionalIndex = (float) k * fractionalScaler;
|
andrewm@0
|
733 //int sB = (int)floorf(fractionalIndex);
|
andrewm@0
|
734 int sB = (int)floor(fractionalIndex);
|
andrewm@0
|
735 int sA = sB + 1;
|
andrewm@0
|
736 if(sA >= numSamplesIn)
|
andrewm@0
|
737 sA = 0;
|
andrewm@0
|
738 float fraction = fractionalIndex - sB;
|
andrewm@0
|
739 tableOut[k] = fraction * tableIn[sA] + (1.0f - fraction) * tableIn[sB];
|
andrewm@0
|
740 tableOut[k] = sineMix * sineTable[k] + (1.0 - sineMix) * tableOut[k];
|
andrewm@0
|
741 }
|
andrewm@0
|
742
|
andrewm@0
|
743 tableOut[numSamplesOut] = tableOut[0];
|
andrewm@0
|
744 }
|
andrewm@0
|
745
|
andrewm@0
|
746 // Create a hysteresis oscillator with a matrix input and output
|
andrewm@0
|
747 inline uint16_t hysteresis_oscillator(uint16_t input, uint16_t risingThreshold, uint16_t fallingThreshold, bool *rising)
|
andrewm@0
|
748 {
|
andrewm@0
|
749 uint16_t value;
|
andrewm@0
|
750
|
andrewm@0
|
751 if(*rising) {
|
andrewm@0
|
752 if(input > risingThreshold) {
|
andrewm@0
|
753 *rising = false;
|
andrewm@0
|
754 value = 0;
|
andrewm@0
|
755 }
|
andrewm@0
|
756 else
|
andrewm@0
|
757 value = 65535;
|
andrewm@0
|
758 }
|
andrewm@0
|
759 else {
|
andrewm@0
|
760 if(input < fallingThreshold) {
|
andrewm@0
|
761 *rising = true;
|
andrewm@0
|
762 value = 65535;
|
andrewm@0
|
763 }
|
andrewm@0
|
764 else
|
andrewm@0
|
765 value = 0;
|
andrewm@0
|
766 }
|
andrewm@0
|
767
|
andrewm@0
|
768 return value;
|
andrewm@0
|
769 }
|
andrewm@0
|
770
|
andrewm@0
|
771 #ifdef DBOX_CAPE_TEST
|
andrewm@0
|
772 // Test the functionality of the D-Box cape by checking each input and output
|
andrewm@0
|
773 // Loopback cable from ADC to DAC needed
|
andrewm@0
|
774 void render_capetest(int numMatrixFrames, int numAudioFrames, float *audioIn, float *audioOut,
|
andrewm@0
|
775 uint16_t *matrixIn, uint16_t *matrixOut)
|
andrewm@0
|
776 {
|
andrewm@0
|
777 static float phase = 0.0;
|
andrewm@0
|
778 static int sampleCounter = 0;
|
andrewm@0
|
779 static int invertChannel = 0;
|
andrewm@0
|
780
|
andrewm@0
|
781 // Play a sine wave on the audio output
|
andrewm@0
|
782 for(int n = 0; n < numAudioFrames; n++) {
|
andrewm@0
|
783 audioOut[2*n] = audioOut[2*n + 1] = 0.5*sinf(phase);
|
andrewm@0
|
784 phase += 2.0 * M_PI * 440.0 / 44100.0;
|
andrewm@0
|
785 if(phase >= 2.0 * M_PI)
|
andrewm@0
|
786 phase -= 2.0 * M_PI;
|
andrewm@0
|
787 }
|
andrewm@0
|
788
|
andrewm@0
|
789 for(int n = 0; n < numMatrixFrames; n++) {
|
andrewm@0
|
790 // Change outputs every 512 samples
|
andrewm@0
|
791 if(sampleCounter < 512) {
|
andrewm@0
|
792 for(int k = 0; k < 8; k++) {
|
andrewm@0
|
793 if(k == invertChannel)
|
andrewm@0
|
794 matrixOut[n*8 + k] = 50000;
|
andrewm@0
|
795 else
|
andrewm@0
|
796 matrixOut[n*8 + k] = 0;
|
andrewm@0
|
797 }
|
andrewm@0
|
798 }
|
andrewm@0
|
799 else {
|
andrewm@0
|
800 for(int k = 0; k < 8; k++) {
|
andrewm@0
|
801 if(k == invertChannel)
|
andrewm@0
|
802 matrixOut[n*8 + k] = 0;
|
andrewm@0
|
803 else
|
andrewm@0
|
804 matrixOut[n*8 + k] = 50000;
|
andrewm@0
|
805 }
|
andrewm@0
|
806 }
|
andrewm@0
|
807
|
andrewm@0
|
808 // Read after 256 samples: input should be low
|
andrewm@0
|
809 if(sampleCounter == 256) {
|
andrewm@0
|
810 for(int k = 0; k < 8; k++) {
|
andrewm@0
|
811 if(k == invertChannel) {
|
andrewm@0
|
812 if(matrixIn[n*8 + k] < 50000) {
|
andrewm@0
|
813 dbox_printf("FAIL channel %d -- output HIGH input %d (inverted)\n", k, matrixIn[n*8 + k]);
|
andrewm@0
|
814 }
|
andrewm@0
|
815 }
|
andrewm@0
|
816 else {
|
andrewm@0
|
817 if(matrixIn[n*8 + k] > 2048) {
|
andrewm@0
|
818 dbox_printf("FAIL channel %d -- output LOW input %d\n", k, matrixIn[n*8 + k]);
|
andrewm@0
|
819 }
|
andrewm@0
|
820 }
|
andrewm@0
|
821 }
|
andrewm@0
|
822 }
|
andrewm@0
|
823 else if(sampleCounter == 768) {
|
andrewm@0
|
824 for(int k = 0; k < 8; k++) {
|
andrewm@0
|
825 if(k == invertChannel) {
|
andrewm@0
|
826 if(matrixIn[n*8 + k] > 2048) {
|
andrewm@0
|
827 dbox_printf("FAIL channel %d -- output LOW input %d (inverted)\n", k, matrixIn[n*8 + k]);
|
andrewm@0
|
828 }
|
andrewm@0
|
829 }
|
andrewm@0
|
830 else {
|
andrewm@0
|
831 if(matrixIn[n*8 + k] < 50000) {
|
andrewm@0
|
832 dbox_printf("FAIL channel %d -- output HIGH input %d\n", k, matrixIn[n*8 + k]);
|
andrewm@0
|
833 }
|
andrewm@0
|
834 }
|
andrewm@0
|
835 }
|
andrewm@0
|
836 }
|
andrewm@0
|
837
|
andrewm@0
|
838 if(++sampleCounter >= 1024) {
|
andrewm@0
|
839 sampleCounter = 0;
|
andrewm@0
|
840 invertChannel++;
|
andrewm@0
|
841 if(invertChannel >= 8)
|
andrewm@0
|
842 invertChannel = 0;
|
andrewm@0
|
843 }
|
andrewm@0
|
844 }
|
andrewm@0
|
845 }
|
andrewm@0
|
846 #endif
|
andrewm@0
|
847
|
andrewm@0
|
848
|