annotate core/I2c_Codec.cpp @ 164:40badaff5729 heavy-updated

- added more pd/heavy examples - removed heavy-specific flags from Makefile - added air-harp cpp example project
author chnrx <chris.heinrichs@gmail.com>
date Thu, 03 Dec 2015 16:19:33 +0000
parents 8ff5668bbbad
children e9a2f31dff7b 94751ad27fd6
rev   line source
andrewm@0 1 /*
andrewm@0 2 * I2c_Codec.cpp
andrewm@0 3 *
andrewm@0 4 * Handle writing the registers to the TLV320AIC310x
andrewm@0 5 * series audio codecs, used on the BeagleBone Audio Cape.
andrewm@0 6 * This code is designed to bypass the ALSA driver and
andrewm@0 7 * configure the codec directly in a sensible way. It
andrewm@0 8 * is complemented by code running on the PRU which uses
andrewm@0 9 * the McASP serial port to transfer audio data.
andrewm@0 10 *
andrewm@0 11 * Created on: May 25, 2014
andrewm@0 12 * Author: Andrew McPherson
andrewm@0 13 */
andrewm@0 14
andrewm@0 15 #include "../include/I2c_Codec.h"
andrewm@0 16
andrewm@0 17 I2c_Codec::I2c_Codec()
andrewm@0 18 : running(false), dacVolumeHalfDbs(0), adcVolumeHalfDbs(0), hpVolumeHalfDbs(0)
andrewm@0 19 {}
andrewm@0 20
andrewm@0 21 // This method initialises the audio codec to its default state
andrewm@0 22 int I2c_Codec::initCodec()
andrewm@0 23 {
andrewm@0 24 // Write the reset register of the codec
andrewm@0 25 if(writeRegister(0x01, 0x80)) // Software reset register
andrewm@0 26 {
andrewm@0 27 cout << "Failed to reset codec\n";
andrewm@0 28 return 1;
andrewm@0 29 }
andrewm@0 30
andrewm@0 31 // Wait for codec to process the reset (for safety)
andrewm@0 32 usleep(5000);
andrewm@0 33
andrewm@0 34 return 0;
andrewm@0 35 }
andrewm@0 36
andrewm@0 37 // Tell the codec to start generating audio
andrewm@0 38 // See the TLV320AIC3106 datasheet for full details of the registers
andrewm@0 39 // The dual_rate flag, when true, runs the codec at 88.2kHz; otherwise
andrewm@0 40 // it runs at 44.1kHz
andrewm@0 41 int I2c_Codec::startAudio(int dual_rate)
andrewm@0 42 {
giuliomoro@142 43 // see datasehet for TLV320AIC3104 from page 44
andrewm@0 44 if(writeRegister(0x02, 0x00)) // Codec sample rate register: fs_ref / 1
andrewm@0 45 return 1;
giuliomoro@145 46 // The sampling frequency is given as f_{S(ref)} = (PLLCLK_IN × K × R)/(2048 × P)
giuliomoro@145 47 // The master clock PLLCLK_IN is 12MHz
giuliomoro@145 48 // K can be varied in intervals of resolution of 0.0001 up to 63.9999
giuliomoro@145 49 // using P=8 and R=1 gives a resolution of 0.0732421875Hz ( 0.000166% at 44.1kHz)
giuliomoro@145 50 // to obtain Fs=44100 we need to have K=60.2112
giuliomoro@145 51
giuliomoro@145 52 if(setPllP(8))
giuliomoro@145 53 return 1;
giuliomoro@145 54 if(setPllR(1))
giuliomoro@145 55 return 1;
giuliomoro@145 56 if(setAudioSamplingRate(44100)) //this will automatically find and set K for the given P and R so that Fs=44100
giuliomoro@145 57 return 1;
giuliomoro@142 58 // if(writeRegister(0x03, 0x91)) // PLL register A: enable
giuliomoro@142 59 // return 1;
giuliomoro@134 60 // if(writeRegister(0x04, 0x1C)) // PLL register B
giuliomoro@134 61 // return 1;
giuliomoro@134 62 // if(writeRegister(0x05, 0x52)) // PLL register C
giuliomoro@134 63 // return 1;
giuliomoro@134 64 // if(writeRegister(0x06, 0x40)) // PLL register D
giuliomoro@134 65 // return 1;
giuliomoro@145 66 // if(writeRegister(0x0B, 0x01)) // Audio codec overflow flag register: PLL R = 1
giuliomoro@145 67 // return 1;
giuliomoro@145 68
giuliomoro@145 69 // if(setPllD(5264)) //7.5264 gives 44.1kHz nominal value with a 12MHz master clock
giuliomoro@145 70 // return 1;
giuliomoro@145 71 // if(setPllJ(7))
giuliomoro@145 72 // return 1;
andrewm@0 73 if(dual_rate) {
andrewm@0 74 if(writeRegister(0x07, 0xEA)) // Codec datapath register: 44.1kHz; dual rate; standard datapath
andrewm@0 75 return 1;
andrewm@0 76 }
andrewm@0 77 else {
andrewm@0 78 if(writeRegister(0x07, 0x8A)) // Codec datapath register: 44.1kHz; std rate; standard datapath
andrewm@0 79 return 1;
andrewm@0 80 }
andrewm@0 81 if(writeRegister(0x08, 0xC0)) // Audio serial control register A: BLCK, WCLK outputs
andrewm@0 82 return 1;
andrewm@0 83 if(writeRegister(0x09, 0x40)) // Audio serial control register B: DSP mode, word len 16 bits
andrewm@0 84 return 1;
andrewm@0 85 if(writeRegister(0x0A, 0x00)) // Audio serial control register C: 0 bit offset
andrewm@0 86 return 1;
andrewm@0 87 if(writeRegister(0x0C, 0x00)) // Digital filter register: disabled
andrewm@0 88 return 1;
andrewm@0 89 if(writeRegister(0x0D, 0x00)) // Headset / button press register A: disabled
andrewm@0 90 return 1;
andrewm@0 91 if(writeRegister(0x0E, 0x00)) // Headset / button press register B: disabled
andrewm@0 92 return 1;
andrewm@0 93 if(writeRegister(0x0F, 0x20)) // Left ADC PGA gain control: not muted; 0x20 = 16dB
andrewm@0 94 return 1;
andrewm@0 95 if(writeRegister(0x10, 0x20)) // Right ADC PGA gain control: not muted; 0x20 = 16dB
andrewm@0 96 return 1;
andrewm@0 97
andrewm@0 98 if(writeRegister(0x25, 0xC0)) // DAC power/driver register: DAC power on (left and right)
andrewm@0 99 return 1;
andrewm@0 100 if(writeRegister(0x26, 0x04)) // High power output driver register: Enable short circuit protection
andrewm@0 101 return 1;
andrewm@0 102 if(writeRegister(0x28, 0x02)) // High power output stage register: disable soft stepping
andrewm@0 103 return 1;
andrewm@0 104
andrewm@0 105 if(writeRegister(0x52, 0x80)) // DAC_L1 to LEFT_LOP volume control: routed, volume 0dB
andrewm@0 106 return 1;
andrewm@0 107 if(writeRegister(0x5C, 0x80)) // DAC_R1 to RIGHT_LOP volume control: routed, volume 0dB
andrewm@0 108 return 1;
andrewm@0 109
andrewm@0 110 if(writeHPVolumeRegisters()) // Send DAC to high-power outputs
andrewm@0 111 return 1;
andrewm@0 112
giuliomoro@142 113 if(writeRegister(0x66, 0x02)) // Clock generation control register: use MCLK, PLL N = 2
andrewm@0 114 return 1;
andrewm@0 115
andrewm@0 116 if(writeRegister(0x33, 0x0D)) // HPLOUT output level control: output level = 0dB, not muted, powered up
andrewm@0 117 return 1;
andrewm@0 118 if(writeRegister(0x41, 0x0D)) // HPROUT output level control: output level = 0dB, not muted, powered up
andrewm@0 119 return 1;
andrewm@0 120 if(writeRegister(0x56, 0x09)) // LEFT_LOP output level control: 0dB, not muted, powered up
andrewm@0 121 return 1;
andrewm@0 122 if(writeRegister(0x5D, 0x09)) // RIGHT_LOP output level control: 0dB, not muted, powered up
andrewm@0 123 return 1;
andrewm@0 124
andrewm@0 125 if(writeDACVolumeRegisters(false)) // Unmute and set volume
andrewm@0 126 return 1;
andrewm@0 127
andrewm@0 128 if(writeRegister(0x65, 0x00)) // GPIO control register B: disabled; codec uses PLLDIV_OUT
andrewm@0 129 return 1;
andrewm@0 130
andrewm@0 131 if(writeADCVolumeRegisters(false)) // Unmute and set ADC volume
andrewm@0 132 return 1;
andrewm@0 133
andrewm@0 134 running = true;
andrewm@0 135 return 0;
andrewm@0 136 }
andrewm@0 137
giuliomoro@97 138 //set the numerator multiplier for the PLL
giuliomoro@97 139 int I2c_Codec::setPllK(float k){
giuliomoro@97 140 short unsigned int j=(int)k;
giuliomoro@134 141 unsigned int d=(int)(0.5+(k-j)*10000); //fractional part, between 0 and 9999
giuliomoro@97 142 if(setPllJ(j)>0)
giuliomoro@97 143 return 1;
giuliomoro@97 144 if(setPllD(d)>0)
giuliomoro@97 145 return 2;
giuliomoro@97 146 return 0;
giuliomoro@97 147 }
giuliomoro@97 148
giuliomoro@97 149
giuliomoro@97 150 //set integer part of the numerator mutliplier of the PLL
giuliomoro@97 151 int I2c_Codec::setPllJ(short unsigned int j){
giuliomoro@97 152 if(j>=64 || j<1){
giuliomoro@97 153 return 1;
giuliomoro@97 154 }
giuliomoro@97 155 if(writeRegister(0x04, j<<2)){ // PLL register B: j<<2
giuliomoro@97 156 printf("I2C error while writing PLL j: %d", j);
giuliomoro@97 157 return 1;
giuliomoro@97 158 }
giuliomoro@134 159 pllJ=j;
giuliomoro@97 160 return 0;
giuliomoro@97 161 }
giuliomoro@97 162
giuliomoro@97 163 //set fractional part(between 0 and 9999) of the numerator mutliplier of the PLL
giuliomoro@97 164 int I2c_Codec::setPllD(unsigned int d){
giuliomoro@97 165 if(d<0 || d>9999)
giuliomoro@97 166 return 1;
giuliomoro@97 167 if(writeRegister(0x05, (d>>6)&255)){ // PLL register C: part 1 : 8 most significant bytes of a 14bit integer
giuliomoro@97 168 printf("I2C error while writing PLL d part 1 : %d", d);
giuliomoro@97 169 return 1;
giuliomoro@97 170 }
giuliomoro@97 171 if(writeRegister(0x06, (d<<2)&255)){ // PLL register D: D=5264, part 2
giuliomoro@97 172 printf("I2C error while writing PLL d part 2 : %d", d);
giuliomoro@97 173 return 1;
giuliomoro@97 174 }
giuliomoro@134 175 pllD=d;
giuliomoro@97 176 return 0;
giuliomoro@97 177 }
giuliomoro@134 178
giuliomoro@142 179 //set integer part of the numerator mutliplier of the PLL
giuliomoro@142 180 //
giuliomoro@142 181 int I2c_Codec::setPllP(short unsigned int p){
giuliomoro@142 182 if(p > 8 || p < 1){
giuliomoro@142 183 return 1;
giuliomoro@142 184 }
giuliomoro@142 185 short unsigned int bits = 0;
giuliomoro@142 186 bits |= 1 << 7; //this means PLL enabled
giuliomoro@142 187 bits |= 0b0010 << 3; // this is the reset value for Q, which is anyhow unused when PLL is active
giuliomoro@142 188 if (p == 8) // 8 is a special value: PLL P Value 000: P = 8
giuliomoro@142 189 bits = bits | 0;
giuliomoro@142 190 else
giuliomoro@142 191 bits = bits | p; // other values are written with their binary representation.
giuliomoro@142 192 if(writeRegister(0x03, bits)){ // PLL register B: j<<2
giuliomoro@142 193 printf("I2C error while writing PLL p: %d", p);
giuliomoro@142 194 return 1;
giuliomoro@142 195 }
giuliomoro@142 196 pllP = p;
giuliomoro@142 197 return 0;
giuliomoro@142 198 }
giuliomoro@142 199 int I2c_Codec::setPllR(unsigned int r){
giuliomoro@142 200 if(r > 16){ //value out of range
giuliomoro@142 201 return 1;
giuliomoro@142 202 }
giuliomoro@142 203 unsigned int bits = 0;
giuliomoro@142 204 //bits D7-D4 are for ADC and DAC overflow flags and are read only
giuliomoro@142 205 if(r == 16) // 16 is a special value: PLL R Value 0000: R = 16
giuliomoro@142 206 bits |= 0;
giuliomoro@142 207 else
giuliomoro@142 208 bits |= r; // other values are written with their binary representation.
giuliomoro@142 209 if(writeRegister(0x0B, bits)){ // PLL register B: j<<2
giuliomoro@142 210 printf("I2C error while writing PLL r: %d", r);
giuliomoro@142 211 return 1;
giuliomoro@142 212 }
giuliomoro@142 213 pllR = r;
giuliomoro@142 214 return 0;
giuliomoro@142 215 }
giuliomoro@134 216 int I2c_Codec::setAudioSamplingRate(float newSamplingRate){
giuliomoro@134 217 long int PLLCLK_IN=12000000;
giuliomoro@134 218 // f_{S(ref)} = (PLLCLK_IN × K × R)/(2048 × P)
giuliomoro@134 219 float k = ((double)(newSamplingRate * pllP * 2048.0f/(float)pllR)) / PLLCLK_IN ;
giuliomoro@134 220 return (setPllK(k));
giuliomoro@134 221 }
giuliomoro@134 222
giuliomoro@134 223 short unsigned int I2c_Codec::getPllJ(){
giuliomoro@134 224 return pllJ;
giuliomoro@134 225 }
giuliomoro@134 226 unsigned int I2c_Codec::getPllD(){
giuliomoro@134 227 return pllD;
giuliomoro@134 228 }
giuliomoro@142 229 unsigned int I2c_Codec::getPllR(){
giuliomoro@142 230 return pllR;
giuliomoro@142 231 }
giuliomoro@142 232 unsigned int I2c_Codec::getPllP(){
giuliomoro@142 233 return pllP;
giuliomoro@142 234 }
giuliomoro@134 235 float I2c_Codec::getPllK(){
giuliomoro@134 236 float j=getPllJ();
giuliomoro@134 237 float d=getPllD();
giuliomoro@134 238 float k=j+d/10000.0f;
giuliomoro@134 239 return k;
giuliomoro@134 240 }
giuliomoro@134 241
giuliomoro@134 242 float I2c_Codec::getAudioSamplingRate(){
giuliomoro@134 243 int pllP=1; //TODO: create get/set for pllP and pllR
giuliomoro@134 244 int pllR=1;
giuliomoro@134 245 long int PLLCLK_IN=12000000;
giuliomoro@134 246 // f_{S(ref)} = (PLLCLK_IN × K × R)/(2048 × P)
giuliomoro@134 247 float fs = (PLLCLK_IN/2048.0f) * getPllK()*pllR/(float)pllP;
giuliomoro@134 248 return fs;
giuliomoro@134 249 }
andrewm@0 250 // Set the volume of the DAC output
andrewm@0 251 int I2c_Codec::setDACVolume(int halfDbSteps)
andrewm@0 252 {
andrewm@0 253 dacVolumeHalfDbs = halfDbSteps;
andrewm@0 254 if(running)
andrewm@0 255 return writeDACVolumeRegisters(false);
andrewm@0 256
andrewm@0 257 return 0;
andrewm@0 258 }
andrewm@0 259
andrewm@0 260 // Set the volume of the DAC output
andrewm@0 261 int I2c_Codec::setADCVolume(int halfDbSteps)
andrewm@0 262 {
andrewm@0 263 adcVolumeHalfDbs = halfDbSteps;
andrewm@0 264 if(running)
andrewm@0 265 return writeADCVolumeRegisters(false);
andrewm@0 266
andrewm@0 267 return 0;
andrewm@0 268 }
andrewm@0 269
andrewm@0 270 // Update the DAC volume control registers
andrewm@0 271 int I2c_Codec::writeDACVolumeRegisters(bool mute)
andrewm@0 272 {
andrewm@0 273 int volumeBits = 0;
andrewm@0 274
andrewm@0 275 if(dacVolumeHalfDbs < 0) { // Volume is specified in half-dBs with 0 as full scale
andrewm@0 276 volumeBits = -dacVolumeHalfDbs;
andrewm@0 277 if(volumeBits > 127)
andrewm@0 278 volumeBits = 127;
andrewm@0 279 }
andrewm@0 280
andrewm@0 281 if(mute) {
andrewm@0 282 if(writeRegister(0x2B, volumeBits | 0x80)) // Left DAC volume control: muted
andrewm@0 283 return 1;
andrewm@0 284 if(writeRegister(0x2C, volumeBits | 0x80)) // Right DAC volume control: muted
andrewm@0 285 return 1;
andrewm@0 286 }
andrewm@0 287 else {
andrewm@0 288 if(writeRegister(0x2B, volumeBits)) // Left DAC volume control: not muted
andrewm@0 289 return 1;
andrewm@0 290 if(writeRegister(0x2C, volumeBits)) // Right DAC volume control: not muted
andrewm@0 291 return 1;
andrewm@0 292 }
andrewm@0 293
andrewm@0 294 return 0;
andrewm@0 295 }
andrewm@0 296
andrewm@0 297 // Update the ADC volume control registers
andrewm@0 298 int I2c_Codec::writeADCVolumeRegisters(bool mute)
andrewm@0 299 {
andrewm@0 300 int volumeBits = 0;
andrewm@0 301
andrewm@0 302 // Volume is specified in half-dBs with 0 as full scale
andrewm@0 303 // The codec uses 1.5dB steps so we divide this number by 3
andrewm@0 304 if(adcVolumeHalfDbs < 0) {
andrewm@0 305 volumeBits = -adcVolumeHalfDbs / 3;
andrewm@0 306 if(volumeBits > 8)
andrewm@0 307 volumeBits = 8;
andrewm@0 308 }
andrewm@0 309
andrewm@0 310 if(mute) {
andrewm@0 311 if(writeRegister(0x13, 0x00)) // Line1L to Left ADC control register: power down
andrewm@0 312 return 1;
andrewm@0 313 if(writeRegister(0x16, 0x00)) // Line1R to Right ADC control register: power down
andrewm@0 314 return 1;
andrewm@0 315 }
andrewm@0 316 else {
andrewm@0 317 if(writeRegister(0x13, 0x7C)) // Line1L disabled; left ADC powered up with soft step
andrewm@0 318 return 1;
andrewm@0 319 if(writeRegister(0x16, 0x7C)) // Line1R disabled; right ADC powered up with soft step
andrewm@0 320 return 1;
andrewm@0 321 if(writeRegister(0x11, (volumeBits << 4) | 0x0F)) // Line2L connected to left ADC
andrewm@0 322 return 1;
andrewm@0 323 if(writeRegister(0x12, volumeBits | 0xF0)) // Line2R connected to right ADC
andrewm@0 324 return 1;
andrewm@0 325 }
andrewm@0 326
andrewm@0 327 return 0;
andrewm@0 328 }
andrewm@0 329
andrewm@0 330 // Set the volume of the headphone output
andrewm@0 331 int I2c_Codec::setHPVolume(int halfDbSteps)
andrewm@0 332 {
andrewm@0 333 hpVolumeHalfDbs = halfDbSteps;
andrewm@0 334 if(running)
andrewm@0 335 return writeHPVolumeRegisters();
andrewm@0 336
andrewm@0 337 return 0;
andrewm@0 338 }
andrewm@0 339
andrewm@0 340
andrewm@0 341 // Update the headphone volume control registers
andrewm@0 342 int I2c_Codec::writeHPVolumeRegisters()
andrewm@0 343 {
andrewm@0 344 int volumeBits = 0;
andrewm@0 345
andrewm@0 346 if(hpVolumeHalfDbs < 0) { // Volume is specified in half-dBs with 0 as full scale
andrewm@0 347 volumeBits = -hpVolumeHalfDbs;
andrewm@0 348 if(volumeBits > 127)
andrewm@0 349 volumeBits = 127;
andrewm@0 350 }
andrewm@0 351
andrewm@0 352 if(writeRegister(0x2F, volumeBits | 0x80)) // DAC_L1 to HPLOUT register: route to HPLOUT, volume 0dB
andrewm@0 353 return 1;
andrewm@0 354 if(writeRegister(0x40, volumeBits | 0x80)) // DAC_R1 to HPROUT register: route to HPROUT, volume 0dB
andrewm@0 355 return 1;
andrewm@0 356
andrewm@0 357 return 0;
andrewm@0 358 }
andrewm@0 359
andrewm@0 360 // This tells the codec to stop generating audio and mute the outputs
andrewm@0 361 int I2c_Codec::stopAudio()
andrewm@0 362 {
andrewm@0 363 if(writeDACVolumeRegisters(true)) // Mute the DACs
andrewm@0 364 return 1;
andrewm@0 365 if(writeADCVolumeRegisters(true)) // Mute the ADCs
andrewm@0 366 return 1;
andrewm@0 367
andrewm@0 368 usleep(10000);
andrewm@0 369
andrewm@0 370 if(writeRegister(0x33, 0x0C)) // HPLOUT output level register: muted
andrewm@0 371 return 1;
andrewm@0 372 if(writeRegister(0x41, 0x0C)) // HPROUT output level register: muted
andrewm@0 373 return 1;
andrewm@0 374 if(writeRegister(0x56, 0x08)) // LEFT_LOP output level control: muted
andrewm@0 375 return 1;
andrewm@0 376 if(writeRegister(0x5D, 0x08)) // RIGHT_LOP output level control: muted
andrewm@0 377 return 1;
andrewm@0 378 if(writeRegister(0x25, 0x00)) // DAC power/driver register: power off
andrewm@0 379 return 1;
andrewm@0 380 if(writeRegister(0x03, 0x11)) // PLL register A: disable
andrewm@0 381 return 1;
andrewm@0 382 if(writeRegister(0x01, 0x80)) // Reset codec to defaults
andrewm@0 383 return 1;
andrewm@0 384
andrewm@0 385 running = false;
andrewm@0 386 return 0;
andrewm@0 387 }
andrewm@0 388
andrewm@0 389 // Write a specific register on the codec
andrewm@0 390 int I2c_Codec::writeRegister(unsigned int reg, unsigned int value)
andrewm@0 391 {
andrewm@0 392 char buf[2] = { reg & 0xFF, value & 0xFF };
andrewm@0 393
andrewm@0 394 if(write(i2C_file, buf, 2) != 2)
andrewm@0 395 {
andrewm@0 396 cout << "Failed to write register " << reg << " on codec\n";
andrewm@0 397 return 1;
andrewm@0 398 }
andrewm@0 399
andrewm@0 400 return 0;
andrewm@0 401 }
andrewm@0 402
andrewm@0 403
andrewm@0 404 int I2c_Codec::readI2C()
andrewm@0 405 {
andrewm@0 406 // Nothing to do here, we only write the registers
andrewm@0 407 return 0;
andrewm@0 408 }
andrewm@0 409
andrewm@0 410
andrewm@0 411 I2c_Codec::~I2c_Codec()
andrewm@0 412 {
andrewm@0 413 if(running)
andrewm@0 414 stopAudio();
andrewm@0 415 }
andrewm@0 416