annotate examples/10-Instruments/d-box/render.cpp @ 509:3bb63b848960 prerelease

set_startup defaults to loop mode
author Giulio Moro <giuliomoro@yahoo.it>
date Wed, 22 Jun 2016 03:28:07 +0100
parents 8fcfbfb32aa0
children 8f8809c77dda
rev   line source
robert@464 1 /*
robert@464 2 * render.cpp
robert@464 3 *
robert@464 4 * Created on: May 28, 2014
robert@464 5 * Author: Victor Zappi
robert@464 6 */
robert@464 7
robert@464 8 #include <Bela.h>
robert@464 9 #include <PRU.h>
robert@464 10
robert@464 11 #include "StatusLED.h"
robert@464 12 #include "config.h"
robert@464 13 #include "OscillatorBank.h"
robert@464 14 #include "FeedbackOscillator.h"
robert@464 15 #include "ADSR.h"
robert@464 16 #include "FIRfilter.h"
robert@464 17 #include <assert.h>
robert@464 18 #include <cmath>
robert@464 19 #include <vector>
robert@464 20
robert@464 21 #undef DBOX_CAPE_TEST
robert@464 22
robert@464 23 // Mappings from pin numbers on PCB to actual DAC channels
robert@464 24 // This gives the DAC and ADC connectors the same effective pinout
robert@464 25 // Update June 2016: this is no longer needed in the latest Bela
robert@464 26 // release, but is kept here for convenience: it used to be
robert@464 27 // 6 4 2 0 1 3 5 7 for the DAC pins
robert@464 28 #define DAC_PIN0 0
robert@464 29 #define DAC_PIN1 1
robert@464 30 #define DAC_PIN2 2
robert@464 31 #define DAC_PIN3 3
robert@464 32 #define DAC_PIN4 4
robert@464 33 #define DAC_PIN5 5
robert@464 34 #define DAC_PIN6 6
robert@464 35 #define DAC_PIN7 7
robert@464 36
robert@464 37 #define ADC_PIN0 0
robert@464 38 #define ADC_PIN1 1
robert@464 39 #define ADC_PIN2 2
robert@464 40 #define ADC_PIN3 3
robert@464 41 #define ADC_PIN4 4
robert@464 42 #define ADC_PIN5 5
robert@464 43 #define ADC_PIN6 6
robert@464 44 #define ADC_PIN7 7
robert@464 45
robert@464 46 #define N_OCT 4.0 // maximum number of octaves on sensor 1
robert@464 47
robert@464 48 extern vector<OscillatorBank*> gOscBanks;
robert@464 49 extern int gCurrentOscBank;
robert@464 50 extern int gNextOscBank;
robert@464 51 extern PRU *gPRU;
robert@464 52 extern StatusLED gStatusLED;
robert@464 53 extern bool gIsLoading;
robert@464 54 extern bool gAudioIn;
robert@464 55
robert@464 56 float *gOscillatorBuffer1, *gOscillatorBuffer2;
robert@464 57 float *gOscillatorBufferRead, *gOscillatorBufferWrite;
robert@464 58 int gOscillatorBufferReadPointer = 0;
robert@464 59 int gOscillatorBufferReadCurrentSize = 0;
robert@464 60 int gOscillatorBufferWriteCurrentSize = 0;
robert@464 61 bool gOscillatorNeedsRender = false;
robert@464 62
robert@464 63 int gMatrixSampleCount = 0; // How many samples have elapsed on the matrix
robert@464 64
robert@464 65 // Wavetable which changes in response to an oscillator
robert@464 66 float *gDynamicWavetable;
robert@464 67 int gDynamicWavetableLength;
robert@464 68 bool gDynamicWavetableNeedsRender = false;
robert@464 69
robert@464 70 // These variables handle the hysteresis oscillator used for setting the playback speed
robert@464 71 bool gSpeedHysteresisOscillatorRising = false;
robert@464 72 int gSpeedHysteresisLastTrigger = 0;
robert@464 73
robert@464 74 // These variables handle the feedback oscillator used for controlling the wavetable
robert@464 75 FeedbackOscillator gFeedbackOscillator;
robert@464 76 float *gFeedbackOscillatorTable;
robert@464 77 int gFeedbackOscillatorTableLength;
robert@464 78
robert@464 79 // This comes from sensor.cpp where it records the most recent touch location on
robert@464 80 // sensor 0.
robert@464 81 extern float gSensor0LatestTouchPos;
robert@464 82 extern int gSensor0LatestTouchNum;
robert@464 83 float gPitchLatestInput = 0;
robert@464 84
robert@464 85 extern float gSensor1LatestTouchPos[];
robert@464 86 //extern float gSensor1LatestTouchSizes[];
robert@464 87 extern int gSensor1LatestTouchCount;
robert@464 88 extern int gSensor1LatestTouchIndex;
robert@464 89 int gSensor1LastTouchIndex = -1;
robert@464 90 int gSensor1InputDelayCounter = -1;
robert@464 91 int gSensor1InputIndex = 0;
robert@464 92 float gSensor1MatrixTouchPos[5] = {0};
robert@464 93
robert@464 94 // FSR value from matrix input
robert@464 95 extern int gLastFSRValue;
robert@464 96
robert@464 97 // Loop points from matrix input 4
robert@464 98 const int gLoopPointsInputBufferSize = 256;
robert@464 99 float gLoopPointsInputBuffer[gLoopPointsInputBufferSize];
robert@464 100 int gLoopPointsInputBufferPointer = 0;
robert@464 101 float gLoopPointMin = 0, gLoopPointMax = 0;
robert@464 102
robert@464 103 // multiplier to activate or mute audio in
robert@464 104 int audioInStatus = 0;
robert@464 105
robert@464 106 // xenomai timer
robert@464 107 SRTIME prevChangeNs = 0;
robert@464 108
robert@464 109 // pitch vars
robert@464 110 float octaveSplitter;
robert@464 111 float semitones[((int)N_OCT*12)+1];
robert@464 112 float deltaTouch = 0;
robert@464 113 float deltaWeightP = 0.5 / 65536.0;
robert@464 114 float deltaWeightI = 0.0005 / 65536.0;
robert@464 115
robert@464 116 // filter vars
robert@464 117 ne10_fir_instance_f32_t filter[2];
robert@464 118 ne10_float32_t *filterIn[2];
robert@464 119 ne10_float32_t *filterOut[2];
robert@464 120 ne10_uint32_t blockSize;
robert@464 121 ne10_float32_t *filterState[2];
robert@464 122 ne10_float32_t prevFiltered[2];
robert@464 123 int filterGain = 80;
robert@464 124 ADSR PeakBurst[2];
robert@464 125 float peak[2];
robert@464 126 float peakThresh = 0.2;
robert@464 127
robert@464 128 // Tasks for lower-priority calculation
robert@464 129 AuxiliaryTask gMediumPriorityRender, gLowPriorityRender;
robert@464 130
robert@464 131
robert@464 132 extern "C" {
robert@464 133 // Function prototype for ARM assembly implementation of oscillator bank
robert@464 134 void oscillator_bank_neon(int numAudioFrames, float *audioOut,
robert@464 135 int activePartialNum, int lookupTableSize,
robert@464 136 float *phases, float *frequencies, float *amplitudes,
robert@464 137 float *freqDerivatives, float *ampDerivatives,
robert@464 138 float *lookupTable);
robert@464 139
robert@464 140 void wavetable_interpolate_neon(int numSamplesIn, int numSamplesOut,
robert@464 141 float *tableIn, float *tableOut);
robert@464 142 }
robert@464 143
robert@464 144 void wavetable_interpolate(int numSamplesIn, int numSamplesOut,
robert@464 145 float *tableIn, float *tableOut,
robert@464 146 float *sineTable, float sineMix);
robert@464 147
robert@464 148 inline float hysteresis_oscillator(float input, float risingThreshold,
robert@464 149 float fallingThreshold, bool *rising);
robert@464 150
robert@464 151 void render_medium_prio();
robert@464 152 void render_low_prio();
robert@464 153
robert@464 154 #ifdef DBOX_CAPE_TEST
robert@464 155 void render_capetest(int numMatrixFrames, int numAudioFrames, float *audioIn, float *audioOut,
robert@464 156 uint16_t *matrixIn, uint16_t *matrixOut);
robert@464 157 #endif
robert@464 158
robert@464 159 bool setup(BelaContext *context, void *userData) {
robert@464 160 int oscBankHopSize = *(int *)userData;
robert@464 161
robert@464 162 if(context->analogChannels != 8) {
robert@464 163 printf("Error: D-Box needs matrix enabled with 8 channels.\n");
robert@464 164 return false;
robert@464 165 }
robert@464 166
robert@464 167 // Allocate two buffers for rendering oscillator bank samples
robert@464 168 // One will be used for writing in the background while the other is used for reading
robert@464 169 // on the audio thread. 8-byte alignment needed for the NEON code.
robert@464 170 if(posix_memalign((void **)&gOscillatorBuffer1, 8, oscBankHopSize * context->audioChannels * sizeof(float))) {
robert@464 171 printf("Error allocating render buffers\n");
robert@464 172 return false;
robert@464 173 }
robert@464 174 if(posix_memalign((void **)&gOscillatorBuffer2, 8, oscBankHopSize * context->audioChannels * sizeof(float))) {
robert@464 175 printf("Error allocating render buffers\n");
robert@464 176 return false;
robert@464 177 }
robert@464 178 gOscillatorBufferWrite = gOscillatorBuffer1;
robert@464 179 gOscillatorBufferRead = gOscillatorBuffer2;
robert@464 180
robert@464 181 memset(gOscillatorBuffer1, 0, oscBankHopSize * context->audioChannels * sizeof(float));
robert@464 182 memset(gOscillatorBuffer2, 0, oscBankHopSize * context->audioChannels * sizeof(float));
robert@464 183
robert@464 184 // Initialise the dynamic wavetable used by the oscillator bank
robert@464 185 // It should match the size of the static one already allocated in the OscillatorBank object
robert@464 186 // Don't forget a guard point at the end of the table
robert@464 187 gDynamicWavetableLength = gOscBanks[gCurrentOscBank]->lookupTableSize;
robert@464 188 if(posix_memalign((void **)&gDynamicWavetable, 8, (gDynamicWavetableLength + 1) * sizeof(float))) {
robert@464 189 printf("Error allocating wavetable\n");
robert@464 190 return false;
robert@464 191 }
robert@464 192
robert@464 193 gFeedbackOscillator.initialise(8192, 10.0, context->analogSampleRate);
robert@464 194
robert@464 195 for(int n = 0; n < gDynamicWavetableLength + 1; n++)
robert@464 196 gDynamicWavetable[n] = 0;
robert@464 197
robert@464 198 // pitch
robert@464 199 float midPos = 0.5;
robert@464 200 octaveSplitter = 1.0 / N_OCT;
robert@464 201 int numOfSemi = 12*N_OCT;
robert@464 202 int middleSemitone = 12*N_OCT/2;
robert@464 203 int lastSemitone = middleSemitone+numOfSemi/2;
robert@464 204 float inc = 1.0 / (N_OCT*12.0);
robert@464 205 int i = -1;
robert@464 206 for(int semi=middleSemitone; semi<=lastSemitone; semi++)
robert@464 207 semitones[semi] = ( midPos + (++i)*inc) + 0.5;
robert@464 208 i = 0;
robert@464 209 for(int semi=middleSemitone-1; semi>=0; semi--)
robert@464 210 semitones[semi] = ( midPos - (++i)*inc) + 0.5;
robert@464 211
robert@464 212 if(gAudioIn)
robert@464 213 audioInStatus = 1;
robert@464 214
robert@464 215 // filter
robert@464 216 blockSize = context->audioFrames;
robert@464 217 filterState[0] = (ne10_float32_t *) NE10_MALLOC ((FILTER_TAP_NUM+blockSize-1) * sizeof (ne10_float32_t));
robert@464 218 filterState[1] = (ne10_float32_t *) NE10_MALLOC ((FILTER_TAP_NUM+blockSize-1) * sizeof (ne10_float32_t));
robert@464 219 filterIn[0] = (ne10_float32_t *) NE10_MALLOC (blockSize * sizeof (ne10_float32_t));
robert@464 220 filterIn[1] = (ne10_float32_t *) NE10_MALLOC (blockSize * sizeof (ne10_float32_t));
robert@464 221 filterOut[0] = (ne10_float32_t *) NE10_MALLOC (blockSize * sizeof (ne10_float32_t));
robert@464 222 filterOut[1] = (ne10_float32_t *) NE10_MALLOC (blockSize * sizeof (ne10_float32_t));
robert@464 223 ne10_fir_init_float(&filter[0], FILTER_TAP_NUM, filterTaps, filterState[0], blockSize);
robert@464 224 ne10_fir_init_float(&filter[1], FILTER_TAP_NUM, filterTaps, filterState[1], blockSize);
robert@464 225
robert@464 226 // peak outputs
robert@464 227 PeakBurst[0].setAttackRate(.00001 * context->analogSampleRate);
robert@464 228 PeakBurst[1].setAttackRate(.00001 * context->analogSampleRate);
robert@464 229 PeakBurst[0].setDecayRate(.5 * context->analogSampleRate);
robert@464 230 PeakBurst[1].setDecayRate(.5 * context->analogSampleRate);
robert@464 231 PeakBurst[0].setSustainLevel(0.0);
robert@464 232 PeakBurst[1].setSustainLevel(0.0);
robert@464 233
robert@464 234 // Initialise auxiliary tasks
robert@464 235 if((gMediumPriorityRender = Bela_createAuxiliaryTask(&render_medium_prio, BELA_AUDIO_PRIORITY - 10, "dbox-calculation-medium")) == 0)
robert@464 236 return false;
robert@464 237 if((gLowPriorityRender = Bela_createAuxiliaryTask(&render_low_prio, BELA_AUDIO_PRIORITY - 15, "dbox-calculation-low")) == 0)
robert@464 238 return false;
robert@464 239
robert@464 240 return true;
robert@464 241 }
robert@464 242
robert@464 243 void render(BelaContext *context, void *userData)
robert@464 244 {
robert@464 245 #ifdef DBOX_CAPE_TEST
robert@464 246 render_capetest(numMatrixFrames, numAudioFrames, audioIn, audioOut, matrixIn, matrixOut);
robert@464 247 #else
robert@464 248 if(gOscBanks[gCurrentOscBank]->state==bank_toreset)
robert@464 249 gOscBanks[gCurrentOscBank]->resetOscillators();
robert@464 250
robert@464 251 if(gOscBanks[gCurrentOscBank]->state==bank_playing)
robert@464 252 {
robert@464 253 assert(context->audioChannels == 2);
robert@464 254
robert@464 255 #ifdef OLD_OSCBANK
robert@464 256 memset(audioOut, 0, numAudioFrames * * sizeof(float));
robert@464 257
robert@464 258 /* Render the oscillator bank. The oscillator bank function is written in NEON assembly
robert@464 259 * and it strips out all extra checks, so find out in advance whether we can render a whole
robert@464 260 * block or whether the frame will increment in the middle of this buffer.
robert@464 261 */
robert@464 262
robert@464 263 int framesRemaining = numAudioFrames;
robert@464 264 float *audioOutWithOffset = audioOut;
robert@464 265
robert@464 266 while(framesRemaining > 0) {
robert@464 267 if(gOscBanks[gCurrentOscBank]->hopCounter >= framesRemaining) {
robert@464 268 /* More frames left in this hop than we need this time. Render and finish */
robert@464 269 oscillator_bank_neon(framesRemaining, audioOutWithOffset,
robert@464 270 gOscBanks[gCurrentOscBank]->actPartNum, gOscBanks[gCurrentOscBank]->lookupTableSize,
robert@464 271 gOscBanks[gCurrentOscBank]->oscillatorPhases, gOscBanks[gCurrentOscBank]->oscillatorNormFrequencies,
robert@464 272 gOscBanks[gCurrentOscBank]->oscillatorAmplitudes,
robert@464 273 gOscBanks[gCurrentOscBank]->oscillatorNormFreqDerivatives,
robert@464 274 gOscBanks[gCurrentOscBank]->oscillatorAmplitudeDerivatives,
robert@464 275 gDynamicWavetable/*gOscBanks[gCurrentOscBank]->lookupTable*/);
robert@464 276 gOscBanks[gCurrentOscBank]->hopCounter -= framesRemaining;
robert@464 277 if(gOscBanks[gCurrentOscBank]->hopCounter <= 0)
robert@464 278 gOscBanks[gCurrentOscBank]->nextHop();
robert@464 279 framesRemaining = 0;
robert@464 280 }
robert@464 281 else {
robert@464 282 /* More frames to render than are left in this hop. Render and decrement the
robert@464 283 * number of remaining frames; then advance to the next oscillator frame.
robert@464 284 */
robert@464 285 oscillator_bank_neon(gOscBanks[gCurrentOscBank]->hopCounter, audioOutWithOffset,
robert@464 286 gOscBanks[gCurrentOscBank]->actPartNum, gOscBanks[gCurrentOscBank]->lookupTableSize,
robert@464 287 gOscBanks[gCurrentOscBank]->oscillatorPhases, gOscBanks[gCurrentOscBank]->oscillatorNormFrequencies,
robert@464 288 gOscBanks[gCurrentOscBank]->oscillatorAmplitudes,
robert@464 289 gOscBanks[gCurrentOscBank]->oscillatorNormFreqDerivatives,
robert@464 290 gOscBanks[gCurrentOscBank]->oscillatorAmplitudeDerivatives,
robert@464 291 gDynamicWavetable/*gOscBanks[gCurrentOscBank]->lookupTable*/);
robert@464 292 framesRemaining -= gOscBanks[gCurrentOscBank]->hopCounter;
robert@464 293 audioOutWithOffset += * gOscBanks[gCurrentOscBank]->hopCounter;
robert@464 294 gOscBanks[gCurrentOscBank]->sampleCount += gOscBanks[gCurrentOscBank]->hopCounter;
robert@464 295 gOscBanks[gCurrentOscBank]->nextHop();
robert@464 296 }
robert@464 297 }
robert@464 298 #else
robert@464 299 for(unsigned int n = 0; n < context->audioFrames; n++) {
robert@464 300 context->audioOut[2*n] = gOscillatorBufferRead[gOscillatorBufferReadPointer++]+context->audioIn[2*n]*audioInStatus;
robert@464 301 context->audioOut[2*n + 1] = gOscillatorBufferRead[gOscillatorBufferReadPointer++]+context->audioIn[2*n+1]*audioInStatus;
robert@464 302
robert@464 303 filterIn[0][n] = fabs(context->audioIn[2*n]); // rectify for peak detection in 1
robert@464 304 filterIn[1][n] = fabs(context->audioIn[2*n+1]); // rectify for peak detection in 2
robert@464 305
robert@464 306 /* FIXME why doesn't this work? */
robert@464 307 /*
robert@464 308 if(gOscillatorBufferReadPointer == gOscillatorBufferCurrentSize/2) {
robert@464 309 gOscillatorNeedsRender = true;
robert@464 310 scheduleAuxiliaryTask(gLowPriorityRender);
robert@464 311 } */
robert@464 312
robert@464 313 if(gOscillatorBufferReadPointer >= gOscillatorBufferReadCurrentSize) {
robert@464 314 // Finished reading from the buffer: swap to the next buffer
robert@464 315 if(gOscillatorBufferRead == gOscillatorBuffer1) {
robert@464 316 gOscillatorBufferRead = gOscillatorBuffer2;
robert@464 317 gOscillatorBufferWrite = gOscillatorBuffer1;
robert@464 318 }
robert@464 319 else {
robert@464 320 gOscillatorBufferRead = gOscillatorBuffer1;
robert@464 321 gOscillatorBufferWrite = gOscillatorBuffer2;
robert@464 322 }
robert@464 323
robert@464 324 // New buffer size is whatever finished writing last hop
robert@464 325 gOscillatorBufferReadCurrentSize = gOscillatorBufferWriteCurrentSize;
robert@464 326 gOscillatorBufferReadPointer = 0;
robert@464 327
robert@464 328 gOscillatorNeedsRender = true;
robert@464 329 Bela_scheduleAuxiliaryTask(gMediumPriorityRender);
robert@464 330 }
robert@464 331 }
robert@464 332 #endif
robert@464 333 }
robert@464 334 else
robert@464 335 {
robert@464 336 for(unsigned int n = 0; n < context->audioFrames; n++) {
robert@464 337 context->audioOut[2*n] = context->audioIn[2*n]*audioInStatus;
robert@464 338 context->audioOut[2*n + 1] = context->audioIn[2*n+1]*audioInStatus;
robert@464 339
robert@464 340 filterIn[0][n] = fabs(context->audioIn[2*n]); // rectify for peak detection in 1
robert@464 341 filterIn[1][n] = fabs(context->audioIn[2*n+1]); // rectify for peak detection in 2
robert@464 342 }
robert@464 343 }
robert@464 344
robert@464 345 // low pass filter audio in 1 and 2 for peak detection
robert@464 346 ne10_fir_float_neon(&filter[0], filterIn[0], filterOut[0], blockSize);
robert@464 347 ne10_fir_float_neon(&filter[1], filterIn[1], filterOut[1], blockSize);
robert@464 348
robert@464 349 for(unsigned int n = 0; n < context->analogFrames; n++) {
robert@464 350
robert@464 351
robert@464 352 /* Matrix Out 0, In 0
robert@464 353 *
robert@464 354 * CV loop
robert@464 355 * Controls pitch of sound
robert@464 356 */
robert@464 357 float touchPosInt = gSensor0LatestTouchPos;
robert@464 358 if(touchPosInt < 0) touchPosInt = 0;
robert@464 359 if(touchPosInt > 1.0) touchPosInt = 1.0;
robert@464 360 context->analogOut[n*8 + DAC_PIN0] = touchPosInt;
robert@464 361
robert@464 362 gPitchLatestInput = context->analogIn[n*8 + ADC_PIN0];
robert@464 363
robert@464 364
robert@464 365 /* Matrix Out 7
robert@464 366 *
robert@464 367 * Loop feedback with Matrix In 0
robert@464 368 * Controls discreet pitch
robert@464 369 */
robert@464 370 float deltaTarget = 0;
robert@464 371 int semitoneIndex = 0;
robert@464 372 if(gSensor0LatestTouchNum>0)
robert@464 373 {
robert@464 374 // current pitch is gPitchLatestInput, already retrieved
robert@464 375 semitoneIndex = ( gPitchLatestInput * 12 * N_OCT )+0.5; // closest semitone
robert@464 376 deltaTarget = (semitones[semitoneIndex]-gPitchLatestInput); // delta between pitch and target
robert@464 377 deltaTouch += deltaTarget*(deltaWeightI); // update feedback [previous + current]
robert@464 378 }
robert@464 379 else
robert@464 380 deltaTouch = 0;
robert@464 381
robert@464 382 float nextOut = touchPosInt + deltaTarget*deltaWeightP + deltaTouch; // add feedback to touch -> next out
robert@464 383 if(nextOut < 0) nextOut = 0; // clamp
robert@464 384 if(nextOut > 1.0) nextOut = 1.0; // clamp
robert@464 385 context->analogOut[n*8 + DAC_PIN7] = nextOut; // send next nextOut
robert@464 386
robert@464 387
robert@464 388 /*
robert@464 389 * Matrix Out 1, In 1
robert@464 390 *
robert@464 391 * Hysteresis (comparator) oscillator
robert@464 392 * Controls speed of playback
robert@464 393 */
robert@464 394 bool wasRising = gSpeedHysteresisOscillatorRising;
robert@464 395 context->analogOut[n*8 + DAC_PIN1] = hysteresis_oscillator(context->analogIn[n*8 + ADC_PIN1], 48000.0/65536.0,
robert@464 396 16000.0/65536.0, &gSpeedHysteresisOscillatorRising);
robert@464 397
robert@464 398 // Find interval of zero crossing
robert@464 399 if(wasRising && !gSpeedHysteresisOscillatorRising) {
robert@464 400 int interval = gMatrixSampleCount - gSpeedHysteresisLastTrigger;
robert@464 401
robert@464 402 // Interval since last trigger will be the new hop size; calculate to set speed
robert@464 403 if(interval < 1)
robert@464 404 interval = 1;
robert@464 405 //float speed = (float)gOscBanks[gCurrentOscBank]->getHopSize() / (float)interval;
robert@464 406 float speed = 144.0 / interval; // Normalise to a fixed expected speed
robert@464 407 gOscBanks[gCurrentOscBank]->setSpeed(speed);
robert@464 408
robert@464 409 gSpeedHysteresisLastTrigger = gMatrixSampleCount;
robert@464 410 }
robert@464 411
robert@464 412 /*
robert@464 413 * Matrix Out 2, In 2
robert@464 414 *
robert@464 415 * Feedback (phase shift) oscillator
robert@464 416 * Controls wavetable used for oscillator bank
robert@464 417 */
robert@464 418
robert@464 419 int tableLength = gFeedbackOscillator.process(context->analogIn[n*8 + ADC_PIN2], &context->analogOut[n*8 + DAC_PIN2]);
robert@464 420 if(tableLength != 0) {
robert@464 421 gFeedbackOscillatorTableLength = tableLength;
robert@464 422 gFeedbackOscillatorTable = gFeedbackOscillator.wavetable();
robert@464 423 gDynamicWavetableNeedsRender = true;
robert@464 424 Bela_scheduleAuxiliaryTask(gLowPriorityRender);
robert@464 425 }
robert@464 426
robert@464 427 /*
robert@464 428 * Matrix Out 3, In 3
robert@464 429 *
robert@464 430 * CV loop with delay for time alignment
robert@464 431 * Touch positions from sensor 1
robert@464 432 * Change every 32 samples (ca. 1.5 ms)
robert@464 433 */
robert@464 434 volatile int touchCount = gSensor1LatestTouchCount;
robert@464 435 if(touchCount == 0)
robert@464 436 context->analogOut[n*8 + DAC_PIN3] = 0;
robert@464 437 else {
robert@464 438 int touchIndex = (gMatrixSampleCount >> 5) % touchCount;
robert@464 439 context->analogOut[n*8 + DAC_PIN3] = gSensor1LatestTouchPos[touchIndex] * 56000.0f / 65536.0f;
robert@464 440 if(touchIndex != gSensor1LastTouchIndex) {
robert@464 441 // Just changed to a new touch output. Reset the counter.
robert@464 442 // It will take 2*matrixFrames samples for this output to come back to the
robert@464 443 // ADC input. But we also want to read near the end of the 32 sample block;
robert@464 444 // let's say 24 samples into it.
robert@464 445
robert@464 446 // FIXME this won't work for p > 2
robert@464 447 gSensor1InputDelayCounter = 24 + 2*context->analogFrames;
robert@464 448 gSensor1InputIndex = touchIndex;
robert@464 449 }
robert@464 450 gSensor1LastTouchIndex = touchIndex;
robert@464 451 }
robert@464 452
robert@464 453 if(gSensor1InputDelayCounter-- >= 0 && touchCount > 0) {
robert@464 454 gSensor1MatrixTouchPos[gSensor1InputIndex] = context->analogIn[n*8 + ADC_PIN3];
robert@464 455 }
robert@464 456
robert@464 457 /* Matrix Out 4
robert@464 458 *
robert@464 459 * Sensor 1 last pos
robert@464 460 */
robert@464 461 touchPosInt = gSensor1LatestTouchPos[gSensor1LatestTouchIndex];
robert@464 462 if(touchPosInt < 0) touchPosInt = 0;
robert@464 463 if(touchPosInt > 1.0) touchPosInt = 1.0;
robert@464 464 context->analogOut[n*8 + DAC_PIN4] = touchPosInt;
robert@464 465
robert@464 466 /* Matrix In 4
robert@464 467 *
robert@464 468 * Loop points selector
robert@464 469 */
robert@464 470 gLoopPointsInputBuffer[gLoopPointsInputBufferPointer++] = context->analogIn[n*8 + ADC_PIN4];
robert@464 471 if(gLoopPointsInputBufferPointer >= gLoopPointsInputBufferSize) {
robert@464 472 // Find min and max values
robert@464 473 float loopMax = 0, loopMin = 1.0;
robert@464 474 for(int i = 0; i < gLoopPointsInputBufferSize; i++) {
robert@464 475 if(gLoopPointsInputBuffer[i] < loopMin)
robert@464 476 loopMin = gLoopPointsInputBuffer[i];
robert@464 477 if(gLoopPointsInputBuffer[i] > loopMax/* && gLoopPointsInputBuffer[i] != 65535*/)
robert@464 478 loopMax = gLoopPointsInputBuffer[i];
robert@464 479 }
robert@464 480
robert@464 481 if(loopMin >= loopMax)
robert@464 482 loopMax = loopMin;
robert@464 483
robert@464 484 gLoopPointMax = loopMax;
robert@464 485 gLoopPointMin = loopMin;
robert@464 486 gLoopPointsInputBufferPointer = 0;
robert@464 487 }
robert@464 488
robert@464 489 /* Matrix Out 5
robert@464 490 *
robert@464 491 * Audio In 1 peak detection and peak burst output
robert@464 492 */
robert@464 493
robert@464 494 filterOut[0][n*2+1] *= filterGain;
robert@464 495 float burstOut = PeakBurst[0].getOutput();
robert@464 496 if( burstOut < 0.1)
robert@464 497 {
robert@464 498 if( (prevFiltered[0]>=peakThresh) && (prevFiltered[0]>=filterOut[0][n*2+1]) )
robert@464 499 {
robert@464 500 peak[0] = prevFiltered[0];
robert@464 501 PeakBurst[0].gate(1);
robert@464 502 }
robert@464 503 }
robert@464 504
robert@464 505 PeakBurst[0].process(1);
robert@464 506
robert@464 507 float convAudio = burstOut*peak[0];
robert@464 508 context->analogOut[n*8 + DAC_PIN5] = convAudio;
robert@464 509 prevFiltered[0] = filterOut[0][n*2+1];
robert@464 510 if(prevFiltered[0]>1)
robert@464 511 prevFiltered[0] = 1;
robert@464 512
robert@464 513 /* Matrix In 5
robert@464 514 *
robert@464 515 * Dissonance, via changing frequency motion of partials
robert@464 516 */
robert@464 517 float amount = (float)context->analogIn[n*8 + ADC_PIN5];
robert@464 518 gOscBanks[gCurrentOscBank]->freqMovement = 1.0 - amount;
robert@464 519
robert@464 520
robert@464 521
robert@464 522
robert@464 523 /* Matrix Out 6
robert@464 524 *
robert@464 525 * Audio In 2 peak detection and peak burst output
robert@464 526 */
robert@464 527
robert@464 528 filterOut[1][n*2+1] *= filterGain;
robert@464 529 burstOut = PeakBurst[1].getOutput();
robert@464 530 if( burstOut < 0.1)
robert@464 531 {
robert@464 532 if( (prevFiltered[1]>=peakThresh) && (prevFiltered[1]>=filterOut[1][n*2+1]) )
robert@464 533 {
robert@464 534 peak[1] = prevFiltered[1];
robert@464 535 PeakBurst[1].gate(1);
robert@464 536 }
robert@464 537 }
robert@464 538
robert@464 539 PeakBurst[1].process(1);
robert@464 540
robert@464 541 convAudio = burstOut*peak[1];
robert@464 542 context->analogOut[n*8 + DAC_PIN6] = convAudio;
robert@464 543 prevFiltered[1] = filterOut[1][n*2+1];
robert@464 544 if(prevFiltered[1]>1)
robert@464 545 prevFiltered[1] = 1;
robert@464 546
robert@464 547 /* Matrix In 6
robert@464 548 *
robert@464 549 * Sound selector
robert@464 550 */
robert@464 551 if(!gIsLoading) {
robert@464 552 // Use hysteresis to avoid jumping back and forth between sounds
robert@464 553 if(gOscBanks.size() > 1) {
robert@464 554 float input = context->analogIn[n*8 + ADC_PIN6];
robert@464 555 const float hystValue = 16000.0 / 65536.0;
robert@464 556
robert@464 557 float upHysteresisValue = ((gCurrentOscBank + 1) + hystValue) / gOscBanks.size();
robert@464 558 float downHysteresisValue = (gCurrentOscBank - hystValue) / gOscBanks.size();
robert@464 559
robert@464 560 if(input > upHysteresisValue || input < downHysteresisValue) {
robert@464 561 gNextOscBank = input * gOscBanks.size();
robert@464 562 if(gNextOscBank < 0)
robert@464 563 gNextOscBank = 0;
robert@464 564 if((unsigned)gNextOscBank >= gOscBanks.size())
robert@464 565 gNextOscBank = gOscBanks.size() - 1;
robert@464 566 }
robert@464 567 }
robert@464 568 }
robert@464 569
robert@464 570 /*
robert@464 571 * Matrix In 7
robert@464 572 *
robert@464 573 * FSR from primary touch sensor
robert@464 574 * Value ranges from 0-1799
robert@464 575 */
robert@464 576 gLastFSRValue = context->analogIn[n*8 + ADC_PIN7] * 1799.0;
robert@464 577 //gLastFSRValue = 1799 - context->analogIn[n*8 + ADC_PIN7] * (1799.0 / 65535.0);
robert@464 578 //dbox_printf("%i\n",gLastFSRValue);
robert@464 579
robert@464 580 gMatrixSampleCount++;
robert@464 581 }
robert@464 582
robert@464 583 #endif /* DBOX_CAPE_TEST */
robert@464 584 }
robert@464 585
robert@464 586 // Medium-priority render function used for audio hop calculations
robert@464 587 void render_medium_prio()
robert@464 588 {
robert@464 589
robert@464 590 if(gOscillatorNeedsRender) {
robert@464 591 gOscillatorNeedsRender = false;
robert@464 592
robert@464 593 /* Render one frame into the write buffer */
robert@464 594 memset(gOscillatorBufferWrite, 0, gOscBanks[gCurrentOscBank]->hopCounter * 2 * sizeof(float)); /* assumes 2 audio channels */
robert@464 595
robert@464 596 oscillator_bank_neon(gOscBanks[gCurrentOscBank]->hopCounter, gOscillatorBufferWrite,
robert@464 597 gOscBanks[gCurrentOscBank]->actPartNum, gOscBanks[gCurrentOscBank]->lookupTableSize,
robert@464 598 gOscBanks[gCurrentOscBank]->oscillatorPhases, gOscBanks[gCurrentOscBank]->oscillatorNormFrequencies,
robert@464 599 gOscBanks[gCurrentOscBank]->oscillatorAmplitudes,
robert@464 600 gOscBanks[gCurrentOscBank]->oscillatorNormFreqDerivatives,
robert@464 601 gOscBanks[gCurrentOscBank]->oscillatorAmplitudeDerivatives,
robert@464 602 /*gOscBanks[gCurrentOscBank]->lookupTable*/gDynamicWavetable);
robert@464 603
robert@464 604 gOscillatorBufferWriteCurrentSize = gOscBanks[gCurrentOscBank]->hopCounter * 2;
robert@464 605
robert@464 606 /* Update the pitch right before the hop
robert@464 607 * Total CV range +/- N_OCT octaves
robert@464 608 */
robert@464 609 float pitch = (float)gPitchLatestInput / octaveSplitter - N_OCT/2;
robert@464 610 //gOscBanks[gCurrentOscBank]->pitchMultiplier = powf(2.0f, pitch);
robert@464 611 gOscBanks[gCurrentOscBank]->pitchMultiplier = pow(2.0f, pitch);
robert@464 612
robert@464 613 #ifdef FIXME_LATER // This doesn't work very well yet
robert@464 614 gOscBanks[gCurrentOscBank]->filterNum = gSensor1LatestTouchCount;
robert@464 615 float freqScaler = gOscBanks[gCurrentOscBank]->getFrequencyScaler();
robert@464 616 for(int i=0; i < gOscBanks[gCurrentOscBank]->filterNum; i++)
robert@464 617 {
robert@464 618 // touch pos is linear but freqs are log
robert@464 619 gOscBanks[gCurrentOscBank]->filterFreqs[i] = ((expf(gSensor1MatrixTouchPos[i]*4)-1)/(expf(4)-1))*gOscBanks[gCurrentOscBank]->filterMaxF*freqScaler;
robert@464 620 gOscBanks[gCurrentOscBank]->filterQ[i] = gSensor1LatestTouchSizes[i];
robert@464 621 if(gOscBanks[gCurrentOscBank]->filterFreqs[i]>500*freqScaler)
robert@464 622 gOscBanks[gCurrentOscBank]->filterPadding[i] = 1+100000*( (gOscBanks[gCurrentOscBank]->filterFreqs[i]-500*freqScaler)/(gOscBanks[gCurrentOscBank]->filterMaxF-500)*freqScaler );
robert@464 623 else
robert@464 624 gOscBanks[gCurrentOscBank]->filterPadding[i] = 1;
robert@464 625 }
robert@464 626 #endif
robert@464 627
robert@464 628 RTIME ticks = rt_timer_read();
robert@464 629 SRTIME ns = rt_timer_tsc2ns(ticks);
robert@464 630 SRTIME delta = ns-prevChangeNs;
robert@464 631
robert@464 632 // switch to next bank cannot be too frequent, to avoid seg fault! [for example sef fault happens when removing both VDD and GND from breadboard]
robert@464 633 if(gNextOscBank != gCurrentOscBank && delta>100000000) {
robert@464 634
robert@464 635 /*printf("ticks %llu\n", (unsigned long long)ticks);
robert@464 636 printf("ns %llu\n", (unsigned long long)ns);
robert@464 637 printf("prevChangeNs %llu\n", (unsigned long long)prevChangeNs);
robert@464 638 printf("-------------------------->%llud\n", (unsigned long long)(ns-prevChangeNs));*/
robert@464 639
robert@464 640 prevChangeNs = ns;
robert@464 641 dbox_printf("Changing to bank %d...\n", gNextOscBank);
robert@464 642 if(gOscBanks[gCurrentOscBank]->state==bank_playing){
robert@464 643 gOscBanks[gCurrentOscBank]->stop();
robert@464 644 }
robert@464 645
robert@464 646 gCurrentOscBank = gNextOscBank;
robert@464 647 gOscBanks[gCurrentOscBank]->hopNumTh = 0;
robert@464 648 }
robert@464 649 else {
robert@464 650 /* Advance to the next oscillator frame */
robert@464 651 gOscBanks[gCurrentOscBank]->nextHop();
robert@464 652 }
robert@464 653 }
robert@464 654 }
robert@464 655
robert@464 656 // Lower-priority render function which performs matrix calculations
robert@464 657 // State should be transferred in via global variables
robert@464 658 void render_low_prio()
robert@464 659 {
robert@464 660 gPRU->setGPIOTestPin();
robert@464 661 if(gDynamicWavetableNeedsRender) {
robert@464 662 // Find amplitude of wavetable
robert@464 663 float meanAmplitude = 0;
robert@464 664 float sineMix;
robert@464 665
robert@464 666 for(int i = 0; i < gFeedbackOscillatorTableLength; i++) {
robert@464 667 //meanAmplitude += fabsf(gFeedbackOscillatorTable[i]);
robert@464 668 meanAmplitude += fabs(gFeedbackOscillatorTable[i]);
robert@464 669 }
robert@464 670 meanAmplitude /= (float)gFeedbackOscillatorTableLength;
robert@464 671
robert@464 672 if(meanAmplitude > 0.35)
robert@464 673 sineMix = 0;
robert@464 674 else
robert@464 675 sineMix = (.35 - meanAmplitude) / .35;
robert@464 676
robert@464 677 //dbox_printf("amp %f mix %f\n", meanAmplitude, sineMix);
robert@464 678
robert@464 679 // Copy to main wavetable
robert@464 680 wavetable_interpolate(gFeedbackOscillatorTableLength, gDynamicWavetableLength,
robert@464 681 gFeedbackOscillatorTable, gDynamicWavetable,
robert@464 682 gOscBanks[gCurrentOscBank]->lookupTable, sineMix);
robert@464 683 }
robert@464 684
robert@464 685 if(gLoopPointMin >= 60000.0/65536.0 && gLoopPointMax >= 60000.0/65536.0) {
robert@464 686 // KLUDGE!
robert@464 687 if(gCurrentOscBank == 0)
robert@464 688 gOscBanks[gCurrentOscBank]->setLoopHops(50, ((float)gOscBanks[gCurrentOscBank]->getLastHop() * 0.6) - 1);
robert@464 689 else
robert@464 690 gOscBanks[gCurrentOscBank]->setLoopHops(5, ((float)gOscBanks[gCurrentOscBank]->getLastHop() * 0.7) - 1);
robert@464 691 }
robert@464 692 else {
robert@464 693 float normLoopPointMin = (float)gLoopPointMin * gOscBanks[gCurrentOscBank]->getLastHop();
robert@464 694 float normLoopPointMax = (float)gLoopPointMax * gOscBanks[gCurrentOscBank]->getLastHop();
robert@464 695
robert@464 696 int intLoopPointMin = normLoopPointMin;
robert@464 697 if(intLoopPointMin < 1)
robert@464 698 intLoopPointMin = 1;
robert@464 699 int intLoopPointMax = normLoopPointMax;
robert@464 700 if(intLoopPointMax <= intLoopPointMin)
robert@464 701 intLoopPointMax = intLoopPointMin + 1;
robert@464 702 if(intLoopPointMax > gOscBanks[gCurrentOscBank]->getLastHop() - 1)
robert@464 703 intLoopPointMax = gOscBanks[gCurrentOscBank]->getLastHop() - 1;
robert@464 704
robert@464 705 //dbox_printf("Loop points %d-%d / %d-%d\n", gLoopPointMin, gLoopPointMax, intLoopPointMin, intLoopPointMax);
robert@464 706
robert@464 707 /* WORKS, jsut need to fix the glitch when jumps!
robert@464 708 * *int currentHop = gOscBanks[gCurrentOscBank]->getCurrentHop();
robert@464 709 if(currentHop < intLoopPointMin -1 )
robert@464 710 gOscBanks[gCurrentOscBank]->setJumpHop(intLoopPointMin + 1);
robert@464 711 else if(currentHop > intLoopPointMax + 1)
robert@464 712 gOscBanks[gCurrentOscBank]->setJumpHop(intLoopPointMax - 1);*/
robert@464 713 gOscBanks[gCurrentOscBank]->setLoopHops(intLoopPointMin, intLoopPointMax);
robert@464 714 }
robert@464 715
robert@464 716 if(gIsLoading)
robert@464 717 gStatusLED.blink(25, 75); // Blink quickly until load finished
robert@464 718 else
robert@464 719 gStatusLED.blink(250 / gOscBanks[gCurrentOscBank]->getSpeed(), 250 / gOscBanks[gCurrentOscBank]->getSpeed());
robert@464 720 gPRU->clearGPIOTestPin();
robert@464 721
robert@464 722 // static int counter = 32;
robert@464 723 // if(--counter == 0) {
robert@464 724 // for(int i = 0; i < gLoopPointsInputBufferSize; i++) {
robert@464 725 // dbox_printf("%d ", gLoopPointsInputBuffer[i]);
robert@464 726 // if(i % 32 == 31)
robert@464 727 // dbox_printf("\n");
robert@464 728 // }
robert@464 729 // dbox_printf("\n\n");
robert@464 730 // counter = 32;
robert@464 731 // }
robert@464 732
robert@464 733 //dbox_printf("min %d max %d\n", gLoopPointMin, gLoopPointMax);
robert@464 734 }
robert@464 735
robert@464 736 // Clean up at the end of render
robert@464 737 void cleanup(BelaContext *context, void *userData)
robert@464 738 {
robert@464 739 free(gOscillatorBuffer1);
robert@464 740 free(gOscillatorBuffer2);
robert@464 741 free(gDynamicWavetable);
robert@464 742 }
robert@464 743
robert@464 744 // Interpolate one wavetable into another. The output size
robert@464 745 // does not include the guard point at the end which will be identical
robert@464 746 // to the first point
robert@464 747 void wavetable_interpolate(int numSamplesIn, int numSamplesOut,
robert@464 748 float *tableIn, float *tableOut,
robert@464 749 float *sineTable, float sineMix)
robert@464 750 {
robert@464 751 float fractionalScaler = (float)numSamplesIn / (float)numSamplesOut;
robert@464 752
robert@464 753 for(int k = 0; k < numSamplesOut; k++) {
robert@464 754 float fractionalIndex = (float) k * fractionalScaler;
robert@464 755 //int sB = (int)floorf(fractionalIndex);
robert@464 756 int sB = (int)floor(fractionalIndex);
robert@464 757 int sA = sB + 1;
robert@464 758 if(sA >= numSamplesIn)
robert@464 759 sA = 0;
robert@464 760 float fraction = fractionalIndex - sB;
robert@464 761 tableOut[k] = fraction * tableIn[sA] + (1.0f - fraction) * tableIn[sB];
robert@464 762 tableOut[k] = sineMix * sineTable[k] + (1.0 - sineMix) * tableOut[k];
robert@464 763 }
robert@464 764
robert@464 765 tableOut[numSamplesOut] = tableOut[0];
robert@464 766 }
robert@464 767
robert@464 768 // Create a hysteresis oscillator with a matrix input and output
robert@464 769 inline float hysteresis_oscillator(float input, float risingThreshold, float fallingThreshold, bool *rising)
robert@464 770 {
robert@464 771 float value;
robert@464 772
robert@464 773 if(*rising) {
robert@464 774 if(input > risingThreshold) {
robert@464 775 *rising = false;
robert@464 776 value = 0;
robert@464 777 }
robert@464 778 else
robert@464 779 value = 1.0;
robert@464 780 }
robert@464 781 else {
robert@464 782 if(input < fallingThreshold) {
robert@464 783 *rising = true;
robert@464 784 value = 1.0;
robert@464 785 }
robert@464 786 else
robert@464 787 value = 0;
robert@464 788 }
robert@464 789
robert@464 790 return value;
robert@464 791 }
robert@464 792
robert@464 793 #ifdef DBOX_CAPE_TEST
robert@464 794 // Test the functionality of the D-Box cape by checking each input and output
robert@464 795 // Loopback cable from ADC to DAC needed
robert@464 796 void render_capetest(int numMatrixFrames, int numAudioFrames, float *audioIn, float *audioOut,
robert@464 797 uint16_t *matrixIn, uint16_t *matrixOut)
robert@464 798 {
robert@464 799 static float phase = 0.0;
robert@464 800 static int sampleCounter = 0;
robert@464 801 static int invertChannel = 0;
robert@464 802
robert@464 803 // Play a sine wave on the audio output
robert@464 804 for(int n = 0; n < numAudioFrames; n++) {
robert@464 805 audioOut[2*n] = audioOut[2*n + 1] = 0.5*sinf(phase);
robert@464 806 phase += 2.0 * M_PI * 440.0 / 44100.0;
robert@464 807 if(phase >= 2.0 * M_PI)
robert@464 808 phase -= 2.0 * M_PI;
robert@464 809 }
robert@464 810
robert@464 811 for(int n = 0; n < numMatrixFrames; n++) {
robert@464 812 // Change outputs every 512 samples
robert@464 813 if(sampleCounter < 512) {
robert@464 814 for(int k = 0; k < 8; k++) {
robert@464 815 if(k == invertChannel)
robert@464 816 matrixOut[n*8 + k] = 50000;
robert@464 817 else
robert@464 818 matrixOut[n*8 + k] = 0;
robert@464 819 }
robert@464 820 }
robert@464 821 else {
robert@464 822 for(int k = 0; k < 8; k++) {
robert@464 823 if(k == invertChannel)
robert@464 824 matrixOut[n*8 + k] = 0;
robert@464 825 else
robert@464 826 matrixOut[n*8 + k] = 50000;
robert@464 827 }
robert@464 828 }
robert@464 829
robert@464 830 // Read after 256 samples: input should be low
robert@464 831 if(sampleCounter == 256) {
robert@464 832 for(int k = 0; k < 8; k++) {
robert@464 833 if(k == invertChannel) {
robert@464 834 if(matrixIn[n*8 + k] < 50000) {
robert@464 835 dbox_printf("FAIL channel %d -- output HIGH input %d (inverted)\n", k, matrixIn[n*8 + k]);
robert@464 836 }
robert@464 837 }
robert@464 838 else {
robert@464 839 if(matrixIn[n*8 + k] > 2048) {
robert@464 840 dbox_printf("FAIL channel %d -- output LOW input %d\n", k, matrixIn[n*8 + k]);
robert@464 841 }
robert@464 842 }
robert@464 843 }
robert@464 844 }
robert@464 845 else if(sampleCounter == 768) {
robert@464 846 for(int k = 0; k < 8; k++) {
robert@464 847 if(k == invertChannel) {
robert@464 848 if(matrixIn[n*8 + k] > 2048) {
robert@464 849 dbox_printf("FAIL channel %d -- output LOW input %d (inverted)\n", k, matrixIn[n*8 + k]);
robert@464 850 }
robert@464 851 }
robert@464 852 else {
robert@464 853 if(matrixIn[n*8 + k] < 50000) {
robert@464 854 dbox_printf("FAIL channel %d -- output HIGH input %d\n", k, matrixIn[n*8 + k]);
robert@464 855 }
robert@464 856 }
robert@464 857 }
robert@464 858 }
robert@464 859
robert@464 860 if(++sampleCounter >= 1024) {
robert@464 861 sampleCounter = 0;
robert@464 862 invertChannel++;
robert@464 863 if(invertChannel >= 8)
robert@464 864 invertChannel = 0;
robert@464 865 }
robert@464 866 }
robert@464 867 }
robert@464 868 #endif
robert@464 869
robert@464 870