andrewm@88
|
1 /*
|
andrewm@88
|
2 * render.cpp
|
andrewm@88
|
3 *
|
andrewm@88
|
4 * Created on: Oct 24, 2014
|
andrewm@88
|
5 * Author: parallels
|
andrewm@88
|
6 */
|
andrewm@88
|
7
|
andrewm@88
|
8
|
andrewm@88
|
9 #include <BeagleRT.h>
|
andrewm@88
|
10 #include <Utilities.h>
|
andrewm@88
|
11 #include <cmath>
|
andrewm@88
|
12
|
andrewm@88
|
13 #define NUMBER_OF_SEGMENTS 10
|
andrewm@88
|
14
|
andrewm@88
|
15 // Two levels of audio: one follows current value, the other holds
|
andrewm@88
|
16 // peaks for longer
|
andrewm@88
|
17 float gAudioLocalLevel = 0, gAudioPeakLevel = 0;
|
andrewm@88
|
18
|
andrewm@88
|
19 // Decay rates for detecting levels
|
andrewm@88
|
20 float gLocalDecayRate = 0.99, gPeakDecayRate = 0.999;
|
andrewm@88
|
21
|
andrewm@88
|
22 // Thresholds for LEDs: set in setup()
|
andrewm@88
|
23 float gThresholds[NUMBER_OF_SEGMENTS + 1];
|
andrewm@88
|
24
|
andrewm@88
|
25 // High-pass filter on the input
|
andrewm@88
|
26 float gLastX[2] = {0};
|
andrewm@88
|
27 float gLastY[2] = {0};
|
andrewm@88
|
28
|
andrewm@88
|
29 // These coefficients make a high-pass filter at 5Hz for 44.1kHz sample rate
|
andrewm@88
|
30 double gB0 = 0.99949640;
|
andrewm@88
|
31 double gB1 = -1.99899280;
|
andrewm@88
|
32 double gB2 = gB0;
|
andrewm@88
|
33 double gA1 = -1.99899254;
|
andrewm@88
|
34 double gA2 = 0.99899305;
|
andrewm@88
|
35
|
andrewm@88
|
36 // setup() is called once before the audio rendering starts.
|
andrewm@88
|
37 // Use it to perform any initialisation and allocation which is dependent
|
andrewm@88
|
38 // on the period size or sample rate.
|
andrewm@88
|
39 //
|
andrewm@88
|
40 // userData holds an opaque pointer to a data structure that was passed
|
andrewm@88
|
41 // in from the call to initAudio().
|
andrewm@88
|
42 //
|
andrewm@88
|
43 // Return true on success; returning false halts the program.
|
andrewm@88
|
44
|
andrewm@88
|
45 bool setup(BeagleRTContext *context, void *userData)
|
andrewm@88
|
46 {
|
andrewm@88
|
47 // This project makes the assumption that the audio and digital
|
andrewm@88
|
48 // sample rates are the same. But check it to be sure!
|
andrewm@88
|
49 if(context->audioFrames != context->digitalFrames) {
|
andrewm@88
|
50 rt_printf("Error: this project needs the audio and digital sample rates to be the same.\n");
|
andrewm@88
|
51 return false;
|
andrewm@88
|
52 }
|
andrewm@88
|
53
|
andrewm@88
|
54 // Initialise threshold levels in -3dB steps. One extra for efficiency in render()
|
andrewm@88
|
55 // Level = 10^(dB/20)
|
andrewm@88
|
56 for(int i = 0; i < NUMBER_OF_SEGMENTS + 1; i++) {
|
andrewm@88
|
57 gThresholds[i] = powf(10.0f, (-1.0 * (NUMBER_OF_SEGMENTS - i)) * .05);
|
andrewm@88
|
58 }
|
andrewm@88
|
59
|
andrewm@88
|
60 for(int i = 0; i < NUMBER_OF_SEGMENTS; i++)
|
andrewm@88
|
61 pinModeFrame(context, 0, i, OUTPUT);
|
andrewm@88
|
62
|
andrewm@88
|
63 return true;
|
andrewm@88
|
64 }
|
andrewm@88
|
65
|
andrewm@88
|
66 // render() is called regularly at the highest priority by the audio engine.
|
andrewm@88
|
67 // Input and output are given from the audio hardware and the other
|
andrewm@88
|
68 // ADCs and DACs (if available). If only audio is available, numMatrixFrames
|
andrewm@88
|
69 // will be 0.
|
andrewm@88
|
70
|
andrewm@88
|
71 void render(BeagleRTContext *context, void *userData)
|
andrewm@88
|
72 {
|
andrewm@88
|
73 for(unsigned int n = 0; n < context->audioFrames; n++) {
|
andrewm@88
|
74 // Get average of audio input channels
|
andrewm@88
|
75 float sample = 0;
|
andrewm@88
|
76 for(unsigned int ch = 0; ch < context->audioChannels; ch++) {
|
andrewm@88
|
77 context->audioOut[n * context->audioChannels + ch] =
|
andrewm@88
|
78 context->audioIn[n * context->audioChannels + ch];
|
andrewm@88
|
79 sample += context->audioIn[n * context->audioChannels + ch];
|
andrewm@88
|
80 }
|
andrewm@88
|
81
|
andrewm@88
|
82 // Do DC-blocking on the sum
|
andrewm@88
|
83 float out = gB0 * sample + gB1 * gLastX[0] + gB2 * gLastX[1]
|
andrewm@88
|
84 - gA1 * gLastY[0] - gA2 * gLastY[1];
|
andrewm@88
|
85
|
andrewm@88
|
86 gLastX[1] = gLastX[0];
|
andrewm@88
|
87 gLastX[0] = sample;
|
andrewm@88
|
88 gLastY[1] = gLastY[0];
|
andrewm@88
|
89 gLastY[0] = out;
|
andrewm@88
|
90
|
andrewm@88
|
91 out = fabsf(out / (float)context->audioChannels);
|
andrewm@88
|
92
|
andrewm@88
|
93 // Do peak detection: fast-responding local level
|
andrewm@88
|
94 if(out > gAudioLocalLevel)
|
andrewm@88
|
95 gAudioLocalLevel = out;
|
andrewm@88
|
96 else
|
andrewm@88
|
97 gAudioLocalLevel *= gLocalDecayRate;
|
andrewm@88
|
98
|
andrewm@88
|
99 // Do peak detection: slow-responding peak level
|
andrewm@88
|
100 if(out > gAudioPeakLevel)
|
andrewm@88
|
101 gAudioPeakLevel = out;
|
andrewm@88
|
102 else {
|
andrewm@88
|
103 // Make peak decay slowly by only multiplying
|
andrewm@88
|
104 // every few samples
|
andrewm@88
|
105 if(((context->audioSampleCount + n) & 31) == 0)
|
andrewm@88
|
106 gAudioPeakLevel *= gPeakDecayRate;
|
andrewm@88
|
107 }
|
andrewm@88
|
108 // LED bargraph on digital outputs 0-9
|
andrewm@88
|
109 for(int led = 0; led < NUMBER_OF_SEGMENTS; led++) {
|
andrewm@88
|
110 // All LEDs up to the local level light up. The LED
|
andrewm@88
|
111 // for the peak level also remains lit.
|
andrewm@88
|
112 int state = LOW;
|
andrewm@88
|
113
|
andrewm@88
|
114 if(gAudioLocalLevel > gThresholds[led])
|
andrewm@88
|
115 state = HIGH;
|
andrewm@88
|
116 else if(gAudioPeakLevel > gThresholds[led] && gAudioPeakLevel <= gThresholds[led + 1])
|
andrewm@88
|
117 state = HIGH;
|
andrewm@88
|
118
|
andrewm@88
|
119 // Write LED
|
andrewm@88
|
120 digitalWriteFrameOnce(context, n, led, state);
|
andrewm@88
|
121 }
|
andrewm@88
|
122 }
|
andrewm@88
|
123 }
|
andrewm@88
|
124
|
andrewm@88
|
125 // cleanup() is called once at the end, after the audio has stopped.
|
andrewm@88
|
126 // Release any resources that were allocated in setup().
|
andrewm@88
|
127
|
andrewm@88
|
128 void cleanup(BeagleRTContext *context, void *userData)
|
andrewm@88
|
129 {
|
andrewm@88
|
130
|
andrewm@88
|
131 }
|