robert@464
|
1 /*
|
robert@464
|
2 ____ _____ _ _
|
robert@464
|
3 | __ )| ____| | / \
|
robert@464
|
4 | _ \| _| | | / _ \
|
robert@464
|
5 | |_) | |___| |___ / ___ \
|
robert@464
|
6 |____/|_____|_____/_/ \_\
|
robert@464
|
7
|
robert@464
|
8 The platform for ultra-low latency audio and sensor processing
|
robert@464
|
9
|
robert@464
|
10 http://bela.io
|
robert@464
|
11
|
robert@464
|
12 A project of the Augmented Instruments Laboratory within the
|
robert@464
|
13 Centre for Digital Music at Queen Mary University of London.
|
robert@464
|
14 http://www.eecs.qmul.ac.uk/~andrewm
|
robert@464
|
15
|
robert@464
|
16 (c) 2016 Augmented Instruments Laboratory: Andrew McPherson,
|
robert@464
|
17 Astrid Bin, Liam Donovan, Christian Heinrichs, Robert Jack,
|
robert@464
|
18 Giulio Moro, Laurel Pardue, Victor Zappi. All rights reserved.
|
robert@464
|
19
|
robert@464
|
20 The Bela software is distributed under the GNU Lesser General Public License
|
robert@464
|
21 (LGPL 3.0), available here: https://www.gnu.org/licenses/lgpl-3.0.txt
|
robert@464
|
22 */
|
robert@464
|
23
|
robert@464
|
24
|
robert@464
|
25 #include <Bela.h>
|
robert@464
|
26 #include <rtdk.h>
|
robert@464
|
27 #include <cstdlib>
|
robert@464
|
28 #include <cmath>
|
robert@464
|
29 #include <cstring>
|
robert@464
|
30 #include <time.h>
|
robert@464
|
31
|
robert@464
|
32 const float kMinimumFrequency = 20.0f;
|
robert@464
|
33 const float kMaximumFrequency = 8000.0f;
|
robert@464
|
34
|
robert@464
|
35 float *gWavetable; // Buffer holding the precalculated sine lookup table
|
robert@464
|
36 float *gPhases; // Buffer holding the phase of each oscillator
|
robert@464
|
37 float *gFrequencies; // Buffer holding the frequencies of each oscillator
|
robert@464
|
38 float *gAmplitudes; // Buffer holding the amplitudes of each oscillator
|
robert@464
|
39 float *gDFrequencies; // Buffer holding the derivatives of frequency
|
robert@464
|
40 float *gDAmplitudes; // Buffer holding the derivatives of amplitude
|
robert@464
|
41
|
robert@464
|
42 float gAudioSampleRate;
|
robert@464
|
43 int gSampleCount; // Sample counter for indicating when to update frequencies
|
robert@464
|
44 float gNewMinFrequency;
|
robert@464
|
45 float gNewMaxFrequency;
|
robert@464
|
46
|
robert@464
|
47 // Task for handling the update of the frequencies using the matrix
|
robert@464
|
48 AuxiliaryTask gFrequencyUpdateTask;
|
robert@464
|
49
|
robert@464
|
50 // These settings are carried over from main.cpp
|
robert@464
|
51 // Setting global variables is an alternative approach
|
robert@464
|
52 // to passing a structure to userData in setup()
|
robert@464
|
53
|
robert@464
|
54 extern int gNumOscillators;
|
robert@464
|
55 extern int gWavetableLength;
|
robert@464
|
56
|
robert@464
|
57 void recalculate_frequencies();
|
robert@464
|
58
|
robert@464
|
59 extern "C" {
|
robert@464
|
60 // Function prototype for ARM assembly implementation of oscillator bank
|
robert@464
|
61 void oscillator_bank_neon(int numAudioFrames, float *audioOut,
|
robert@464
|
62 int activePartialNum, int lookupTableSize,
|
robert@464
|
63 float *phases, float *frequencies, float *amplitudes,
|
robert@464
|
64 float *freqDerivatives, float *ampDerivatives,
|
robert@464
|
65 float *lookupTable);
|
robert@464
|
66 }
|
robert@464
|
67
|
robert@464
|
68 // setup() is called once before the audio rendering starts.
|
robert@464
|
69 // Use it to perform any initialisation and allocation which is dependent
|
robert@464
|
70 // on the period size or sample rate.
|
robert@464
|
71 //
|
robert@464
|
72 // userData holds an opaque pointer to a data structure that was passed
|
robert@464
|
73 // in from the call to initAudio().
|
robert@464
|
74 //
|
robert@464
|
75 // Return true on success; returning false halts the program.
|
robert@464
|
76 bool setup(BelaContext *context, void *userData)
|
robert@464
|
77 {
|
robert@464
|
78 srandom(time(NULL));
|
robert@464
|
79
|
robert@464
|
80 if(context->audioChannels != 2) {
|
robert@464
|
81 rt_printf("Error: this example needs stereo audio enabled\n");
|
robert@464
|
82 return false;
|
robert@464
|
83 }
|
robert@464
|
84
|
robert@464
|
85 // Initialise the sine wavetable
|
robert@464
|
86 if(posix_memalign((void **)&gWavetable, 8, (gWavetableLength + 1) * sizeof(float))) {
|
robert@464
|
87 rt_printf("Error allocating wavetable\n");
|
robert@464
|
88 return false;
|
robert@464
|
89 }
|
robert@464
|
90 for(int n = 0; n < gWavetableLength + 1; n++)
|
robert@464
|
91 gWavetable[n] = sinf(2.0 * M_PI * (float)n / (float)gWavetableLength);
|
robert@464
|
92
|
robert@464
|
93 // Allocate the other buffers
|
robert@464
|
94 if(posix_memalign((void **)&gPhases, 16, gNumOscillators * sizeof(float))) {
|
robert@464
|
95 rt_printf("Error allocating phase buffer\n");
|
robert@464
|
96 return false;
|
robert@464
|
97 }
|
robert@464
|
98 if(posix_memalign((void **)&gFrequencies, 16, gNumOscillators * sizeof(float))) {
|
robert@464
|
99 rt_printf("Error allocating frequency buffer\n");
|
robert@464
|
100 return false;
|
robert@464
|
101 }
|
robert@464
|
102 if(posix_memalign((void **)&gAmplitudes, 16, gNumOscillators * sizeof(float))) {
|
robert@464
|
103 rt_printf("Error allocating amplitude buffer\n");
|
robert@464
|
104 return false;
|
robert@464
|
105 }
|
robert@464
|
106 if(posix_memalign((void **)&gDFrequencies, 16, gNumOscillators * sizeof(float))) {
|
robert@464
|
107 rt_printf("Error allocating frequency derivative buffer\n");
|
robert@464
|
108 return false;
|
robert@464
|
109 }
|
robert@464
|
110 if(posix_memalign((void **)&gDAmplitudes, 16, gNumOscillators * sizeof(float))) {
|
robert@464
|
111 rt_printf("Error allocating amplitude derivative buffer\n");
|
robert@464
|
112 return false;
|
robert@464
|
113 }
|
robert@464
|
114
|
robert@464
|
115 // Initialise buffer contents
|
robert@464
|
116
|
robert@464
|
117 float freq = kMinimumFrequency;
|
robert@464
|
118 float increment = (kMaximumFrequency - kMinimumFrequency) / (float)gNumOscillators;
|
robert@464
|
119
|
robert@464
|
120 for(int n = 0; n < gNumOscillators; n++) {
|
robert@464
|
121 gPhases[n] = 0.0;
|
robert@464
|
122
|
robert@464
|
123 if(context->analogFrames == 0) {
|
robert@464
|
124 // Random frequencies when used without matrix
|
robert@464
|
125 gFrequencies[n] = kMinimumFrequency + (kMaximumFrequency - kMinimumFrequency) * ((float)random() / (float)RAND_MAX);
|
robert@464
|
126 }
|
robert@464
|
127 else {
|
robert@464
|
128 // Constant spread of frequencies when used with matrix
|
robert@464
|
129 gFrequencies[n] = freq;
|
robert@464
|
130 freq += increment;
|
robert@464
|
131 }
|
robert@464
|
132
|
robert@464
|
133 // For efficiency, frequency is expressed in change in wavetable position per sample, not Hz or radians
|
robert@464
|
134 gFrequencies[n] *= (float)gWavetableLength / context->audioSampleRate;
|
robert@464
|
135 gAmplitudes[n] = ((float)random() / (float)RAND_MAX) / (float)gNumOscillators;
|
robert@464
|
136 gDFrequencies[n] = gDAmplitudes[n] = 0.0;
|
robert@464
|
137 }
|
robert@464
|
138
|
robert@464
|
139 increment = 0;
|
robert@464
|
140 freq = 440.0;
|
robert@464
|
141
|
robert@464
|
142 for(int n = 0; n < gNumOscillators; n++) {
|
robert@464
|
143 // Update the frequencies to a regular spread, plus a small amount of randomness
|
robert@464
|
144 // to avoid weird phase effects
|
robert@464
|
145 float randScale = 0.99 + .02 * (float)random() / (float)RAND_MAX;
|
robert@464
|
146 float newFreq = freq * randScale;
|
robert@464
|
147
|
robert@464
|
148 // For efficiency, frequency is expressed in change in wavetable position per sample, not Hz or radians
|
robert@464
|
149 gFrequencies[n] = newFreq * (float)gWavetableLength / context->audioSampleRate;
|
robert@464
|
150
|
robert@464
|
151 freq += increment;
|
robert@464
|
152 }
|
robert@464
|
153
|
robert@464
|
154 // Initialise auxiliary tasks
|
robert@464
|
155 if((gFrequencyUpdateTask = Bela_createAuxiliaryTask(&recalculate_frequencies, 85, "bela-update-frequencies")) == 0)
|
robert@464
|
156 return false;
|
robert@464
|
157
|
robert@464
|
158 //for(int n = 0; n < gNumOscillators; n++)
|
robert@464
|
159 // rt_printf("%f\n", gFrequencies[n]);
|
robert@464
|
160
|
robert@464
|
161 gAudioSampleRate = context->audioSampleRate;
|
robert@464
|
162 gSampleCount = 0;
|
robert@464
|
163
|
robert@464
|
164 return true;
|
robert@464
|
165 }
|
robert@464
|
166
|
robert@464
|
167 // render() is called regularly at the highest priority by the audio engine.
|
robert@464
|
168 // Input and output are given from the audio hardware and the other
|
robert@464
|
169 // ADCs and DACs (if available). If only audio is available, numMatrixFrames
|
robert@464
|
170 // will be 0.
|
robert@464
|
171
|
robert@464
|
172 void render(BelaContext *context, void *userData)
|
robert@464
|
173 {
|
robert@464
|
174 // Initialise buffer to 0
|
robert@464
|
175 memset(context->audioOut, 0, 2 * context->audioFrames * sizeof(float));
|
robert@464
|
176
|
robert@464
|
177 // Render audio frames
|
robert@464
|
178 oscillator_bank_neon(context->audioFrames, context->audioOut,
|
robert@464
|
179 gNumOscillators, gWavetableLength,
|
robert@464
|
180 gPhases, gFrequencies, gAmplitudes,
|
robert@464
|
181 gDFrequencies, gDAmplitudes,
|
robert@464
|
182 gWavetable);
|
robert@464
|
183
|
robert@464
|
184 if(context->analogFrames != 0 && (gSampleCount += context->audioFrames) >= 128) {
|
robert@464
|
185 gSampleCount = 0;
|
robert@464
|
186 gNewMinFrequency = map(context->analogIn[0], 0, 1.0, 1000.0f, 8000.0f);
|
robert@464
|
187 gNewMaxFrequency = map(context->analogIn[1], 0, 1.0, 1000.0f, 8000.0f);
|
robert@464
|
188
|
robert@464
|
189 // Make sure max >= min
|
robert@464
|
190 if(gNewMaxFrequency < gNewMinFrequency) {
|
robert@464
|
191 float temp = gNewMaxFrequency;
|
robert@464
|
192 gNewMaxFrequency = gNewMinFrequency;
|
robert@464
|
193 gNewMinFrequency = temp;
|
robert@464
|
194 }
|
robert@464
|
195
|
robert@464
|
196 // Request that the lower-priority task run at next opportunity
|
robert@464
|
197 //Bela_scheduleAuxiliaryTask(gFrequencyUpdateTask);
|
robert@464
|
198 }
|
robert@464
|
199 }
|
robert@464
|
200
|
robert@464
|
201 // This is a lower-priority call to update the frequencies which will happen
|
robert@464
|
202 // periodically when the matrix is enabled. By placing it at a lower priority,
|
robert@464
|
203 // it has minimal effect on the audio performance but it will take longer to
|
robert@464
|
204 // complete if the system is under heavy audio load.
|
robert@464
|
205
|
robert@464
|
206 void recalculate_frequencies()
|
robert@464
|
207 {
|
robert@464
|
208 float freq = gNewMinFrequency;
|
robert@464
|
209 float increment = (gNewMaxFrequency - gNewMinFrequency) / (float)gNumOscillators;
|
robert@464
|
210
|
robert@464
|
211 for(int n = 0; n < gNumOscillators; n++) {
|
robert@464
|
212 // Update the frequencies to a regular spread, plus a small amount of randomness
|
robert@464
|
213 // to avoid weird phase effects
|
robert@464
|
214 float randScale = 0.99 + .02 * (float)random() / (float)RAND_MAX;
|
robert@464
|
215 float newFreq = freq * randScale;
|
robert@464
|
216
|
robert@464
|
217 // For efficiency, frequency is expressed in change in wavetable position per sample, not Hz or radians
|
robert@464
|
218 gFrequencies[n] = newFreq * (float)gWavetableLength / gAudioSampleRate;
|
robert@464
|
219
|
robert@464
|
220 freq += increment;
|
robert@464
|
221 }
|
robert@464
|
222 }
|
robert@464
|
223
|
robert@464
|
224
|
robert@464
|
225 // cleanup() is called once at the end, after the audio has stopped.
|
robert@464
|
226 // Release any resources that were allocated in setup().
|
robert@464
|
227
|
robert@464
|
228 void cleanup(BelaContext *context, void *userData)
|
robert@464
|
229 {
|
robert@464
|
230 free(gWavetable);
|
robert@464
|
231 free(gPhases);
|
robert@464
|
232 free(gFrequencies);
|
robert@464
|
233 free(gAmplitudes);
|
robert@464
|
234 free(gDFrequencies);
|
robert@464
|
235 free(gDAmplitudes);
|
robert@464
|
236 }
|
robert@464
|
237
|
robert@464
|
238
|
robert@464
|
239 /**
|
robert@500
|
240 \example oscillator-bank/render.cpp
|
robert@464
|
241
|
robert@464
|
242 Oscillator Bank
|
robert@464
|
243 ----------------------
|
robert@464
|
244
|
robert@464
|
245 These files demonstrate an oscillator bank implemented in assembly code
|
robert@464
|
246 that is used as part of the d-box project.
|
robert@464
|
247 */
|