d@0: /* d@0: * Copyright (c) 2003, 2007-8 Matteo Frigo d@0: * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology d@0: * d@0: * This program is free software; you can redistribute it and/or modify d@0: * it under the terms of the GNU General Public License as published by d@0: * the Free Software Foundation; either version 2 of the License, or d@0: * (at your option) any later version. d@0: * d@0: * This program is distributed in the hope that it will be useful, d@0: * but WITHOUT ANY WARRANTY; without even the implied warranty of d@0: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the d@0: * GNU General Public License for more details. d@0: * d@0: * You should have received a copy of the GNU General Public License d@0: * along with this program; if not, write to the Free Software d@0: * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA d@0: * d@0: */ d@0: /* Generated by: ../../genfft/gen_twiddle_c -standalone -fma -reorder-insns -simd -compact -variables 100000 -include fftw-spu.h -trivial-stores -n 5 -name X(spu_t1fv_5) */ d@0: d@0: /* d@0: * This function contains 20 FP additions, 19 FP multiplications, d@0: * (or, 11 additions, 10 multiplications, 9 fused multiply/add), d@0: * 31 stack variables, 4 constants, and 10 memory accesses d@0: */ d@0: #include "fftw-spu.h" d@0: d@0: void X(spu_t1fv_5) (R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { d@0: DVK(KP559016994, +0.559016994374947424102293417182819058860154590); d@0: DVK(KP618033988, +0.618033988749894848204586834365638117720309180); d@0: DVK(KP951056516, +0.951056516295153572116439333379382143405698634); d@0: DVK(KP250000000, +0.250000000000000000000000000000000000000000000); d@0: INT m; d@0: R *x; d@0: x = ri; d@0: for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(rs)) { d@0: V T1, Tg, Th, Tc, Te, T3, Ta, T5, T8, T2, T9, T4, T7, T6, Tb; d@0: V Td, Tp, Ti, Tm, Tl, Tf, Tk, Tn, Tj, To; d@0: T1 = LD(&(x[0]), ms, &(x[0])); d@0: T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); d@0: T3 = BYTWJ(&(W[0]), T2); d@0: T9 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); d@0: Ta = BYTWJ(&(W[TWVL * 4]), T9); d@0: T4 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); d@0: T5 = BYTWJ(&(W[TWVL * 6]), T4); d@0: T7 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); d@0: T8 = BYTWJ(&(W[TWVL * 2]), T7); d@0: Tg = VSUB(T3, T5); d@0: T6 = VADD(T3, T5); d@0: Tb = VADD(T8, Ta); d@0: Th = VSUB(T8, Ta); d@0: Tc = VADD(T6, Tb); d@0: Te = VSUB(T6, Tb); d@0: Tp = VADD(T1, Tc); d@0: Td = VFNMS(LDK(KP250000000), Tc, T1); d@0: ST(&(x[0]), Tp, ms, &(x[0])); d@0: Ti = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Th, Tg)); d@0: Tm = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tg, Th)); d@0: Tl = VFNMS(LDK(KP559016994), Te, Td); d@0: Tf = VFMA(LDK(KP559016994), Te, Td); d@0: Tk = VFMAI(Ti, Tf); d@0: Tj = VFNMSI(Ti, Tf); d@0: ST(&(x[WS(rs, 1)]), Tj, ms, &(x[WS(rs, 1)])); d@0: Tn = VFMAI(Tm, Tl); d@0: To = VFNMSI(Tm, Tl); d@0: ST(&(x[WS(rs, 3)]), To, ms, &(x[WS(rs, 1)])); d@0: ST(&(x[WS(rs, 4)]), Tk, ms, &(x[0])); d@0: ST(&(x[WS(rs, 2)]), Tn, ms, &(x[0])); d@0: } d@0: }