d@0: /* d@0: * Copyright (c) 2003, 2007-8 Matteo Frigo d@0: * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology d@0: * d@0: * This program is free software; you can redistribute it and/or modify d@0: * it under the terms of the GNU General Public License as published by d@0: * the Free Software Foundation; either version 2 of the License, or d@0: * (at your option) any later version. d@0: * d@0: * This program is distributed in the hope that it will be useful, d@0: * but WITHOUT ANY WARRANTY; without even the implied warranty of d@0: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the d@0: * GNU General Public License for more details. d@0: * d@0: * You should have received a copy of the GNU General Public License d@0: * along with this program; if not, write to the Free Software d@0: * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA d@0: * d@0: */ d@0: /* Generated by: ../../genfft/gen_twiddle_c -standalone -fma -reorder-insns -simd -compact -variables 100000 -include fftw-spu.h -trivial-stores -n 8 -name X(spu_t1fv_8) */ d@0: d@0: /* d@0: * This function contains 33 FP additions, 24 FP multiplications, d@0: * (or, 23 additions, 14 multiplications, 10 fused multiply/add), d@0: * 44 stack variables, 1 constants, and 16 memory accesses d@0: */ d@0: #include "fftw-spu.h" d@0: d@0: void X(spu_t1fv_8) (R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { d@0: DVK(KP707106781, +0.707106781186547524400844362104849039284835938); d@0: INT m; d@0: R *x; d@0: x = ri; d@0: for (m = mb, W = W + (mb * ((TWVL / VL) * 14)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(rs)) { d@0: V T4, Tu, Tl, Tv, Tx, Ty, Tf, Tm, T1, T3, T2, Ti, Tk, Th, Tj; d@0: V T6, Td, T8, Tb, T5, Tc, T7, Ta, T9, Te, Tq, Tr, Tw, Tz, To; d@0: V Tp, Tg, Tn, TE, TF, TC, TD, Ts, Tt, TA, TB; d@0: T1 = LD(&(x[0]), ms, &(x[0])); d@0: T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); d@0: T3 = BYTWJ(&(W[TWVL * 6]), T2); d@0: T4 = VSUB(T1, T3); d@0: Tu = VADD(T1, T3); d@0: Th = LD(&(x[WS(rs, 2)]), ms, &(x[0])); d@0: Ti = BYTWJ(&(W[TWVL * 2]), Th); d@0: Tj = LD(&(x[WS(rs, 6)]), ms, &(x[0])); d@0: Tk = BYTWJ(&(W[TWVL * 10]), Tj); d@0: Tl = VSUB(Ti, Tk); d@0: Tv = VADD(Ti, Tk); d@0: T5 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); d@0: T6 = BYTWJ(&(W[0]), T5); d@0: Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); d@0: Td = BYTWJ(&(W[TWVL * 4]), Tc); d@0: T7 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); d@0: T8 = BYTWJ(&(W[TWVL * 8]), T7); d@0: Ta = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); d@0: Tb = BYTWJ(&(W[TWVL * 12]), Ta); d@0: Tx = VADD(T6, T8); d@0: T9 = VSUB(T6, T8); d@0: Te = VSUB(Tb, Td); d@0: Ty = VADD(Tb, Td); d@0: Tf = VADD(T9, Te); d@0: Tm = VSUB(Te, T9); d@0: Tg = VFMA(LDK(KP707106781), Tf, T4); d@0: Tq = VFNMS(LDK(KP707106781), Tf, T4); d@0: Tr = VFMA(LDK(KP707106781), Tm, Tl); d@0: Tn = VFNMS(LDK(KP707106781), Tm, Tl); d@0: To = VFNMSI(Tn, Tg); d@0: Tp = VFMAI(Tn, Tg); d@0: ST(&(x[WS(rs, 1)]), To, ms, &(x[WS(rs, 1)])); d@0: ST(&(x[WS(rs, 7)]), Tp, ms, &(x[WS(rs, 1)])); d@0: TC = VSUB(Tu, Tv); d@0: Tw = VADD(Tu, Tv); d@0: Tz = VADD(Tx, Ty); d@0: TD = VSUB(Ty, Tx); d@0: TE = VFNMSI(TD, TC); d@0: TF = VFMAI(TD, TC); d@0: ST(&(x[WS(rs, 6)]), TE, ms, &(x[0])); d@0: ST(&(x[WS(rs, 2)]), TF, ms, &(x[0])); d@0: Ts = VFNMSI(Tr, Tq); d@0: Tt = VFMAI(Tr, Tq); d@0: ST(&(x[WS(rs, 5)]), Ts, ms, &(x[WS(rs, 1)])); d@0: ST(&(x[WS(rs, 3)]), Tt, ms, &(x[WS(rs, 1)])); d@0: TA = VSUB(Tw, Tz); d@0: TB = VADD(Tw, Tz); d@0: ST(&(x[WS(rs, 4)]), TA, ms, &(x[0])); d@0: ST(&(x[0]), TB, ms, &(x[0])); d@0: } d@0: }