Mercurial > hg > batch-feature-extraction-tool
view Lib/fftw-3.2.1/threads/dft-vrank-geq1.c @ 1:e86e9c111b29
Updates stuff that potentially fixes the memory leak and also makes it work on Windows and Linux (Need to test). Still have to fix fftw include for linux in Jucer.
author | David Ronan <d.m.ronan@qmul.ac.uk> |
---|---|
date | Thu, 09 Jul 2015 15:01:32 +0100 |
parents | 25bf17994ef1 |
children |
line wrap: on
line source
/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include "threads.h" typedef struct { solver super; int vecloop_dim; const int *buddies; int nbuddies; } S; typedef struct { plan_dft super; plan **cldrn; INT its, ots; int nthr; const S *solver; } P; typedef struct { INT its, ots; R *ri, *ii, *ro, *io; plan **cldrn; } PD; static void *spawn_apply(spawn_data *d) WITH_ALIGNED_STACK({ PD *ego = (PD *) d->data; INT its = ego->its; INT ots = ego->ots; int thr_num = d->thr_num; plan_dft *cld = (plan_dft *) ego->cldrn[thr_num]; cld->apply((plan *) cld, ego->ri + thr_num * its, ego->ii + thr_num * its, ego->ro + thr_num * ots, ego->io + thr_num * ots); return 0; }) static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io) { const P *ego = (const P *) ego_; PD d; d.its = ego->its; d.ots = ego->ots; d.cldrn = ego->cldrn; d.ri = ri; d.ii = ii; d.ro = ro; d.io = io; X(spawn_loop)(ego->nthr, ego->nthr, spawn_apply, (void*) &d); } static void awake(plan *ego_, enum wakefulness wakefulness) { P *ego = (P *) ego_; int i; for (i = 0; i < ego->nthr; ++i) X(plan_awake)(ego->cldrn[i], wakefulness); } static void destroy(plan *ego_) { P *ego = (P *) ego_; int i; for (i = 0; i < ego->nthr; ++i) X(plan_destroy_internal)(ego->cldrn[i]); X(ifree)(ego->cldrn); } static void print(const plan *ego_, printer *p) { const P *ego = (const P *) ego_; const S *s = ego->solver; int i; p->print(p, "(dft-thr-vrank>=1-x%d/%d", ego->nthr, s->vecloop_dim); for (i = 0; i < ego->nthr; ++i) if (i == 0 || (ego->cldrn[i] != ego->cldrn[i-1] && (i <= 1 || ego->cldrn[i] != ego->cldrn[i-2]))) p->print(p, "%(%p%)", ego->cldrn[i]); p->putchr(p, ')'); } static int pickdim(const S *ego, const tensor *vecsz, int oop, int *dp) { return X(pickdim)(ego->vecloop_dim, ego->buddies, ego->nbuddies, vecsz, oop, dp); } static int applicable0(const solver *ego_, const problem *p_, const planner *plnr, int *dp) { const S *ego = (const S *) ego_; const problem_dft *p = (const problem_dft *) p_; return (1 && plnr->nthr > 1 && FINITE_RNK(p->vecsz->rnk) && p->vecsz->rnk > 0 && pickdim(ego, p->vecsz, p->ri != p->ro, dp) ); } static int applicable(const solver *ego_, const problem *p_, const planner *plnr, int *dp) { const S *ego = (const S *)ego_; if (!applicable0(ego_, p_, plnr, dp)) return 0; /* fftw2 behavior */ if (NO_VRANK_SPLITSP(plnr) && (ego->vecloop_dim != ego->buddies[0])) return 0; return 1; } static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) { const S *ego = (const S *) ego_; const problem_dft *p; P *pln; problem *cldp; int vdim; iodim *d; plan **cldrn = (plan **) 0; int i, nthr; INT its, ots, block_size; tensor *vecsz = 0; static const plan_adt padt = { X(dft_solve), awake, print, destroy }; if (!applicable(ego_, p_, plnr, &vdim)) return (plan *) 0; p = (const problem_dft *) p_; d = p->vecsz->dims + vdim; block_size = (d->n + plnr->nthr - 1) / plnr->nthr; nthr = (int)((d->n + block_size - 1) / block_size); plnr->nthr = (plnr->nthr + nthr - 1) / nthr; its = d->is * block_size; ots = d->os * block_size; cldrn = (plan **)MALLOC(sizeof(plan *) * nthr, PLANS); for (i = 0; i < nthr; ++i) cldrn[i] = (plan *) 0; vecsz = X(tensor_copy)(p->vecsz); for (i = 0; i < nthr; ++i) { vecsz->dims[vdim].n = (i == nthr - 1) ? (d->n - i*block_size) : block_size; cldp = X(mkproblem_dft)(p->sz, vecsz, p->ri + i*its, p->ii + i*its, p->ro + i*ots, p->io + i*ots); cldrn[i] = X(mkplan_d)(plnr, cldp); if (!cldrn[i]) goto nada; } X(tensor_destroy)(vecsz); pln = MKPLAN_DFT(P, &padt, apply); pln->cldrn = cldrn; pln->its = its; pln->ots = ots; pln->nthr = nthr; pln->solver = ego; X(ops_zero)(&pln->super.super.ops); pln->super.super.pcost = 0; for (i = 0; i < nthr; ++i) { X(ops_add2)(&cldrn[i]->ops, &pln->super.super.ops); pln->super.super.pcost += cldrn[i]->pcost; } return &(pln->super.super); nada: if (cldrn) { for (i = 0; i < nthr; ++i) X(plan_destroy_internal)(cldrn[i]); X(ifree)(cldrn); } X(tensor_destroy)(vecsz); return (plan *) 0; } static solver *mksolver(int vecloop_dim, const int *buddies, int nbuddies) { static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 }; S *slv = MKSOLVER(S, &sadt); slv->vecloop_dim = vecloop_dim; slv->buddies = buddies; slv->nbuddies = nbuddies; return &(slv->super); } void X(dft_thr_vrank_geq1_register)(planner *p) { int i; /* FIXME: Should we try other vecloop_dim values? */ static const int buddies[] = { 1, -1 }; const int nbuddies = (int)(sizeof(buddies) / sizeof(buddies[0])); for (i = 0; i < nbuddies; ++i) REGISTER_SOLVER(p, mksolver(buddies[i], buddies, nbuddies)); }