view Lib/fftw-3.2.1/reodft/redft00e-r2hc-pad.c @ 1:e86e9c111b29

Updates stuff that potentially fixes the memory leak and also makes it work on Windows and Linux (Need to test). Still have to fix fftw include for linux in Jucer.
author David Ronan <d.m.ronan@qmul.ac.uk>
date Thu, 09 Jul 2015 15:01:32 +0100
parents 25bf17994ef1
children
line wrap: on
line source
/*
 * Copyright (c) 2003, 2007-8 Matteo Frigo
 * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */


/* Do a REDFT00 problem via an R2HC problem, padded symmetrically to
   twice the size.  This is asymptotically a factor of ~2 worse than
   redft00e-r2hc.c (the algorithm used in e.g. FFTPACK and Numerical
   Recipes), but we abandoned the latter after we discovered that it
   has intrinsic accuracy problems. */

#include "reodft.h"

typedef struct {
     solver super;
} S;

typedef struct {
     plan_rdft super;
     plan *cld, *cldcpy;
     INT is;
     INT n;
     INT vl;
     INT ivs, ovs;
} P;

static void apply(const plan *ego_, R *I, R *O)
{
     const P *ego = (const P *) ego_;
     INT is = ego->is;
     INT i, n = ego->n;
     INT iv, vl = ego->vl;
     INT ivs = ego->ivs, ovs = ego->ovs;
     R *buf;

     buf = (R *) MALLOC(sizeof(R) * (2*n), BUFFERS);

     for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
	  buf[0] = I[0];
	  for (i = 1; i < n; ++i) {
	       R a = I[i * is];
	       buf[i] = a;
	       buf[2*n - i] = a;
	  }
	  buf[i] = I[i * is]; /* i == n, Nyquist */
	  
	  /* r2hc transform of size 2*n */
	  {
	       plan_rdft *cld = (plan_rdft *) ego->cld;
	       cld->apply((plan *) cld, buf, buf);
	  }
	  
	  /* copy n+1 real numbers (real parts of hc array) from buf to O */
	  {
	       plan_rdft *cldcpy = (plan_rdft *) ego->cldcpy;
	       cldcpy->apply((plan *) cldcpy, buf, O);
	  }
     }

     X(ifree)(buf);
}

static void awake(plan *ego_, enum wakefulness wakefulness)
{
     P *ego = (P *) ego_;
     X(plan_awake)(ego->cld, wakefulness);
     X(plan_awake)(ego->cldcpy, wakefulness);
}

static void destroy(plan *ego_)
{
     P *ego = (P *) ego_;
     X(plan_destroy_internal)(ego->cldcpy);
     X(plan_destroy_internal)(ego->cld);
}

static void print(const plan *ego_, printer *p)
{
     const P *ego = (const P *) ego_;
     p->print(p, "(redft00e-r2hc-pad-%D%v%(%p%)%(%p%))", 
	      ego->n + 1, ego->vl, ego->cld, ego->cldcpy);
}

static int applicable0(const solver *ego_, const problem *p_)
{
     const problem_rdft *p = (const problem_rdft *) p_;
     UNUSED(ego_);

     return (1
	     && p->sz->rnk == 1
	     && p->vecsz->rnk <= 1
	     && p->kind[0] == REDFT00
	     && p->sz->dims[0].n > 1  /* n == 1 is not well-defined */
	  );
}

static int applicable(const solver *ego, const problem *p, const planner *plnr)
{
     return (!NO_SLOWP(plnr) && applicable0(ego, p));
}

static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
{
     P *pln;
     const problem_rdft *p;
     plan *cld = (plan *) 0, *cldcpy;
     R *buf = (R *) 0;
     INT n;
     INT vl, ivs, ovs;
     opcnt ops;

     static const plan_adt padt = {
	  X(rdft_solve), awake, print, destroy
     };

     if (!applicable(ego_, p_, plnr))
	  goto nada;

     p = (const problem_rdft *) p_;

     n = p->sz->dims[0].n - 1;
     A(n > 0);
     buf = (R *) MALLOC(sizeof(R) * (2*n), BUFFERS);

     cld = X(mkplan_d)(plnr,X(mkproblem_rdft_1_d)(X(mktensor_1d)(2*n,1,1), 
						  X(mktensor_0d)(), 
						  buf, buf, R2HC));
     if (!cld)
	  goto nada;

     X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs);
     cldcpy =
	  X(mkplan_d)(plnr,
		      X(mkproblem_rdft_1_d)(X(mktensor_0d)(),
					    X(mktensor_1d)(n+1,1,
							   p->sz->dims[0].os), 
					    buf, TAINT(p->O, ovs), R2HC));
     if (!cldcpy)
	  goto nada;

     X(ifree)(buf);

     pln = MKPLAN_RDFT(P, &padt, apply);

     pln->n = n;
     pln->is = p->sz->dims[0].is;
     pln->cld = cld;
     pln->cldcpy = cldcpy;
     pln->vl = vl;
     pln->ivs = ivs;
     pln->ovs = ovs;
     
     X(ops_zero)(&ops);
     ops.other = n + 2*n; /* loads + stores (input -> buf) */

     X(ops_zero)(&pln->super.super.ops);
     X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops);
     X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops);
     X(ops_madd2)(pln->vl, &cldcpy->ops, &pln->super.super.ops);

     return &(pln->super.super);

 nada:
     X(ifree0)(buf);
     if (cld)
	  X(plan_destroy_internal)(cld);  
     return (plan *)0;
}

/* constructor */
static solver *mksolver(void)
{
     static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
     S *slv = MKSOLVER(S, &sadt);
     return &(slv->super);
}

void X(redft00e_r2hc_pad_register)(planner *p)
{
     REGISTER_SOLVER(p, mksolver());
}