Mercurial > hg > batch-feature-extraction-tool
view Lib/fftw-3.2.1/rdft/problem.c @ 1:e86e9c111b29
Updates stuff that potentially fixes the memory leak and also makes it work on Windows and Linux (Need to test). Still have to fix fftw include for linux in Jucer.
author | David Ronan <d.m.ronan@qmul.ac.uk> |
---|---|
date | Thu, 09 Jul 2015 15:01:32 +0100 |
parents | 25bf17994ef1 |
children |
line wrap: on
line source
/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include "rdft.h" #include <stddef.h> static void destroy(problem *ego_) { problem_rdft *ego = (problem_rdft *) ego_; #if !defined(STRUCT_HACK_C99) && !defined(STRUCT_HACK_KR) X(ifree0)(ego->kind); #endif X(tensor_destroy2)(ego->vecsz, ego->sz); X(ifree)(ego_); } static void kind_hash(md5 *m, const rdft_kind *kind, int rnk) { int i; for (i = 0; i < rnk; ++i) X(md5int)(m, kind[i]); } static void hash(const problem *p_, md5 *m) { const problem_rdft *p = (const problem_rdft *) p_; X(md5puts)(m, "rdft"); X(md5int)(m, p->I == p->O); kind_hash(m, p->kind, p->sz->rnk); X(md5int)(m, X(alignment_of)(p->I)); X(md5int)(m, X(alignment_of)(p->O)); X(tensor_md5)(m, p->sz); X(tensor_md5)(m, p->vecsz); } static void recur(const iodim *dims, int rnk, R *I) { if (rnk == RNK_MINFTY) return; else if (rnk == 0) I[0] = K(0.0); else if (rnk > 0) { INT i, n = dims[0].n, is = dims[0].is; if (rnk == 1) { /* this case is redundant but faster */ for (i = 0; i < n; ++i) I[i * is] = K(0.0); } else { for (i = 0; i < n; ++i) recur(dims + 1, rnk - 1, I + i * is); } } } void X(rdft_zerotens)(tensor *sz, R *I) { recur(sz->dims, sz->rnk, I); } #define KSTR_LEN 8 const char *X(rdft_kind_str)(rdft_kind kind) { static const char kstr[][KSTR_LEN] = { "r2hc", "r2hc01", "r2hc10", "r2hc11", "hc2r", "hc2r01", "hc2r10", "hc2r11", "dht", "redft00", "redft01", "redft10", "redft11", "rodft00", "rodft01", "rodft10", "rodft11" }; A(kind >= 0 && kind < sizeof(kstr) / KSTR_LEN); return kstr[kind]; } static void print(const problem *ego_, printer *p) { const problem_rdft *ego = (const problem_rdft *) ego_; int i; p->print(p, "(rdft %d %D %T %T", X(alignment_of)(ego->I), (INT)(ego->O - ego->I), ego->sz, ego->vecsz); for (i = 0; i < ego->sz->rnk; ++i) p->print(p, " %d", (int)ego->kind[i]); p->print(p, ")"); } static void zero(const problem *ego_) { const problem_rdft *ego = (const problem_rdft *) ego_; tensor *sz = X(tensor_append)(ego->vecsz, ego->sz); X(rdft_zerotens)(sz, UNTAINT(ego->I)); X(tensor_destroy)(sz); } static const problem_adt padt = { PROBLEM_RDFT, hash, zero, print, destroy }; /* Dimensions of size 1 that are not REDFT/RODFT are no-ops and can be eliminated. REDFT/RODFT unit dimensions often have factors of 2.0 and suchlike from normalization and phases, although in principle these constant factors from different dimensions could be combined. */ static int nontrivial(const iodim *d, rdft_kind kind) { return (d->n > 1 || kind == R2HC11 || kind == HC2R11 || (REODFT_KINDP(kind) && kind != REDFT01 && kind != RODFT01)); } problem *X(mkproblem_rdft)(const tensor *sz, const tensor *vecsz, R *I, R *O, const rdft_kind *kind) { problem_rdft *ego; int rnk = sz->rnk; int i; A(X(tensor_kosherp)(sz)); A(X(tensor_kosherp)(vecsz)); A(FINITE_RNK(sz->rnk)); if (UNTAINT(I) == UNTAINT(O)) I = O = JOIN_TAINT(I, O); if (I == O && !X(tensor_inplace_locations)(sz, vecsz)) return X(mkproblem_unsolvable)(); for (i = rnk = 0; i < sz->rnk; ++i) { A(sz->dims[i].n > 0); if (nontrivial(sz->dims + i, kind[i])) ++rnk; } #if defined(STRUCT_HACK_KR) ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft) + sizeof(rdft_kind) * (rnk > 0 ? rnk - 1 : 0), &padt); #elif defined(STRUCT_HACK_C99) ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft) + sizeof(rdft_kind) * rnk, &padt); #else ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft), &padt); ego->kind = (rdft_kind *) MALLOC(sizeof(rdft_kind) * rnk, PROBLEMS); #endif /* do compression and sorting as in X(tensor_compress), but take transform kind into account (sigh) */ ego->sz = X(mktensor)(rnk); for (i = rnk = 0; i < sz->rnk; ++i) { if (nontrivial(sz->dims + i, kind[i])) { ego->kind[rnk] = kind[i]; ego->sz->dims[rnk++] = sz->dims[i]; } } for (i = 0; i + 1 < rnk; ++i) { int j; for (j = i + 1; j < rnk; ++j) if (X(dimcmp)(ego->sz->dims + i, ego->sz->dims + j) > 0) { iodim dswap; rdft_kind kswap; dswap = ego->sz->dims[i]; ego->sz->dims[i] = ego->sz->dims[j]; ego->sz->dims[j] = dswap; kswap = ego->kind[i]; ego->kind[i] = ego->kind[j]; ego->kind[j] = kswap; } } for (i = 0; i < rnk; ++i) if (ego->sz->dims[i].n == 2 && (ego->kind[i] == REDFT00 || ego->kind[i] == DHT || ego->kind[i] == HC2R)) ego->kind[i] = R2HC; /* size-2 transforms are equivalent */ ego->vecsz = X(tensor_compress_contiguous)(vecsz); ego->I = I; ego->O = O; A(FINITE_RNK(ego->sz->rnk)); return &(ego->super); } /* Same as X(mkproblem_rdft), but also destroy input tensors. */ problem *X(mkproblem_rdft_d)(tensor *sz, tensor *vecsz, R *I, R *O, const rdft_kind *kind) { problem *p = X(mkproblem_rdft)(sz, vecsz, I, O, kind); X(tensor_destroy2)(vecsz, sz); return p; } /* As above, but for rnk <= 1 only and takes a scalar kind parameter */ problem *X(mkproblem_rdft_1)(const tensor *sz, const tensor *vecsz, R *I, R *O, rdft_kind kind) { A(sz->rnk <= 1); return X(mkproblem_rdft)(sz, vecsz, I, O, &kind); } problem *X(mkproblem_rdft_1_d)(tensor *sz, tensor *vecsz, R *I, R *O, rdft_kind kind) { A(sz->rnk <= 1); return X(mkproblem_rdft_d)(sz, vecsz, I, O, &kind); } /* create a zero-dimensional problem */ problem *X(mkproblem_rdft_0_d)(tensor *vecsz, R *I, R *O) { return X(mkproblem_rdft_d)(X(mktensor_0d)(), vecsz, I, O, (const rdft_kind *)0); }