view Lib/fftw-3.2.1/rdft/generic.c @ 1:e86e9c111b29

Updates stuff that potentially fixes the memory leak and also makes it work on Windows and Linux (Need to test). Still have to fix fftw include for linux in Jucer.
author David Ronan <d.m.ronan@qmul.ac.uk>
date Thu, 09 Jul 2015 15:01:32 +0100
parents 25bf17994ef1
children
line wrap: on
line source
/*
 * Copyright (c) 2003, 2007-8 Matteo Frigo
 * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

#include "rdft.h"

typedef struct {
     solver super;
     rdft_kind kind;
} S;

typedef struct {
     plan_rdft super;
     twid *td;
     INT n, is, os;
     rdft_kind kind;
} P;

/***************************************************************************/

static void cdot_r2hc(INT n, const E *x, const R *w, R *or0, R *oi1)
{
     INT i;

     E rr = x[0], ri = 0;
     x += 1;
     for (i = 1; i + i < n; ++i) {
	  rr += x[0] * w[0];
	  ri += x[1] * w[1];
	  x += 2; w += 2;
     }
     *or0 = rr;
     *oi1 = ri;
}

static void hartley_r2hc(INT n, const R *xr, INT xs, E *o, R *pr)
{
     INT i;
     E sr;
     o[0] = sr = xr[0]; o += 1;
     for (i = 1; i + i < n; ++i) {
	  R a, b;
	  a = xr[i * xs];
	  b =  xr[(n - i) * xs];
	  sr += (o[0] = a + b);
#if FFT_SIGN == -1
	  o[1] = b - a;
#else
	  o[1] = a - b;
#endif
	  o += 2;
     }
     *pr = sr;
}
		    
static void apply_r2hc(const plan *ego_, R *I, R *O)
{
     const P *ego = (const P *) ego_;
     INT i;
     INT n = ego->n, is = ego->is, os = ego->os;
     const R *W = ego->td->W;
     E *buf;

     STACK_MALLOC(E *, buf, n * sizeof(E));
     hartley_r2hc(n, I, is, buf, O);

     for (i = 1; i + i < n; ++i) {
	  cdot_r2hc(n, buf, W, O + i * os, O + (n - i) * os);
	  W += n - 1;
     }

     STACK_FREE(buf);
}


static void cdot_hc2r(INT n, const E *x, const R *w, R *or0, R *or1)
{
     INT i;

     E rr = x[0], ii = 0; 
     x += 1;
     for (i = 1; i + i < n; ++i) {
	  rr += x[0] * w[0];
	  ii += x[1] * w[1];
	  x += 2; w += 2;
     }
#if FFT_SIGN == -1
     *or0 = rr - ii;
     *or1 = rr + ii;
#else
     *or0 = rr + ii;
     *or1 = rr - ii;
#endif
}

static void hartley_hc2r(INT n, const R *x, INT xs, E *o, R *pr)
{
     INT i;
     E sr;

     o[0] = sr = x[0]; o += 1;
     for (i = 1; i + i < n; ++i) {
	  sr += (o[0] = x[i * xs] + x[i * xs]);
	  o[1] = x[(n - i) * xs] + x[(n - i) * xs];
	  o += 2;
     }
     *pr = sr;
}

static void apply_hc2r(const plan *ego_, R *I, R *O)		    
{
     const P *ego = (const P *) ego_;
     INT i;
     INT n = ego->n, is = ego->is, os = ego->os;
     const R *W = ego->td->W;
     E *buf;

     STACK_MALLOC(E *, buf, n * sizeof(E));
     hartley_hc2r(n, I, is, buf, O);

     for (i = 1; i + i < n; ++i) {
	  cdot_hc2r(n, buf, W, O + i * os, O + (n - i) * os);
	  W += n - 1;
     }

     STACK_FREE(buf);
}


/***************************************************************************/

static void awake(plan *ego_, enum wakefulness wakefulness)
{
     P *ego = (P *) ego_;
     static const tw_instr half_tw[] = {
	  { TW_HALF, 1, 0 },
	  { TW_NEXT, 1, 0 }
     };

     X(twiddle_awake)(wakefulness, &ego->td, half_tw, ego->n, ego->n,
		      (ego->n - 1) / 2);
}

static void print(const plan *ego_, printer *p)
{
     const P *ego = (const P *) ego_;

     p->print(p, "(rdft-generic-%s-%D)", 
	      ego->kind == R2HC ? "r2hc" : "hc2r", 
	      ego->n);
}

static int applicable0(const S *ego, const problem *p_)
{
     const problem_rdft *p = (const problem_rdft *) p_;
     return (1
	     && p->sz->rnk == 1
	     && p->vecsz->rnk == 0
	     && (p->sz->dims[0].n % 2) == 1 
	     && X(is_prime)(p->sz->dims[0].n)
	     && p->kind[0] == ego->kind
	  );
}

static int applicable(const S *ego, const problem *p_, 
		      const planner *plnr)
{
     if (NO_SLOWP(plnr)) return 0;
     if (!applicable0(ego, p_)) return 0;

     if (NO_LARGE_GENERICP(plnr)) {
          const problem_rdft *p = (const problem_rdft *) p_;
	  if (p->sz->dims[0].n >= GENERIC_MIN_BAD) return 0; 
     }
     return 1;
}

static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
{
     const S *ego = (const S *)ego_;
     const problem_rdft *p;
     P *pln;
     INT n;

     static const plan_adt padt = {
	  X(rdft_solve), awake, print, X(plan_null_destroy)
     };

     if (!applicable(ego, p_, plnr))
          return (plan *)0;

     p = (const problem_rdft *) p_;
     pln = MKPLAN_RDFT(P, &padt, 
		       R2HC_KINDP(p->kind[0]) ? apply_r2hc : apply_hc2r);

     pln->n = n = p->sz->dims[0].n;
     pln->is = p->sz->dims[0].is;
     pln->os = p->sz->dims[0].os;
     pln->td = 0;
     pln->kind = ego->kind;

     pln->super.super.ops.add = (n-1) * 2.5;
     pln->super.super.ops.mul = 0;
     pln->super.super.ops.fma = 0.5 * (n-1) * (n-1) ;
#if 0 /* these are nice pipelined sequential loads and should cost nothing */
     pln->super.super.ops.other = (n-1)*(2 + 1 + (n-1));  /* approximate */
#endif

     return &(pln->super.super);
}

static solver *mksolver(rdft_kind kind)
{
     static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
     S *slv = MKSOLVER(S, &sadt);
     slv->kind = kind;
     return &(slv->super);
}

void X(rdft_generic_register)(planner *p)
{
     REGISTER_SOLVER(p, mksolver(R2HC));
     REGISTER_SOLVER(p, mksolver(HC2R));
}