view Lib/fftw-3.2.1/rdft/dht-r2hc.c @ 1:e86e9c111b29

Updates stuff that potentially fixes the memory leak and also makes it work on Windows and Linux (Need to test). Still have to fix fftw include for linux in Jucer.
author David Ronan <d.m.ronan@qmul.ac.uk>
date Thu, 09 Jul 2015 15:01:32 +0100
parents 25bf17994ef1
children
line wrap: on
line source
/*
 * Copyright (c) 2003, 2007-8 Matteo Frigo
 * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */


/* Solve a DHT problem (Discrete Hartley Transform) via post-processing
   of an R2HC problem. */

#include "rdft.h"

typedef struct {
     solver super;
} S;

typedef struct {
     plan_rdft super;
     plan *cld;
     INT os;
     INT n;
} P;

static void apply(const plan *ego_, R *I, R *O)
{
     const P *ego = (const P *) ego_;
     INT os = ego->os;
     INT i, n = ego->n;

     {
	  plan_rdft *cld = (plan_rdft *) ego->cld;
	  cld->apply((plan *) cld, I, O);
     }

     for (i = 1; i < n - i; ++i) {
	  E a, b;
	  a = O[os * i];
	  b = O[os * (n - i)];
#if FFT_SIGN == -1
	  O[os * i] = a - b;
	  O[os * (n - i)] = a + b;
#else
	  O[os * i] = a + b;
	  O[os * (n - i)] = a - b;
#endif
     }
}

static void awake(plan *ego_, enum wakefulness wakefulness)
{
     P *ego = (P *) ego_;
     X(plan_awake)(ego->cld, wakefulness);
}

static void destroy(plan *ego_)
{
     P *ego = (P *) ego_;
     X(plan_destroy_internal)(ego->cld);
}

static void print(const plan *ego_, printer *p)
{
     const P *ego = (const P *) ego_;
     p->print(p, "(dht-r2hc-%D%(%p%))", ego->n, ego->cld);
}

static int applicable0(const problem *p_, const planner *plnr)
{
     const problem_rdft *p = (const problem_rdft *) p_;
     return (1
	     && !NO_DHT_R2HCP(plnr)
	     && p->sz->rnk == 1
	     && p->vecsz->rnk == 0
	     && p->kind[0] == DHT
	  );
}

static int applicable(const solver *ego, const problem *p, const planner *plnr)
{
     UNUSED(ego);
     return (!NO_SLOWP(plnr) && applicable0(p, plnr));
}

static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
{
     P *pln;
     const problem_rdft *p;
     plan *cld;

     static const plan_adt padt = {
	  X(rdft_solve), awake, print, destroy
     };

     if (!applicable(ego_, p_, plnr))
          return (plan *)0;

     p = (const problem_rdft *) p_;

     /* NO_DHT_R2HC stops infinite loops with rdft-dht.c */
     cld = X(mkplan_f_d)(plnr, 
			 X(mkproblem_rdft_1)(p->sz, p->vecsz, 
					     p->I, p->O, R2HC),
			 NO_DHT_R2HC, 0, 0);
     if (!cld) return (plan *)0;

     pln = MKPLAN_RDFT(P, &padt, apply);

     pln->n = p->sz->dims[0].n;
     pln->os = p->sz->dims[0].os;
     pln->cld = cld;
     
     pln->super.super.ops = cld->ops;
     pln->super.super.ops.other += 4 * ((pln->n - 1)/2);
     pln->super.super.ops.add += 2 * ((pln->n - 1)/2);

     return &(pln->super.super);
}

/* constructor */
static solver *mksolver(void)
{
     static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
     S *slv = MKSOLVER(S, &sadt);
     return &(slv->super);
}

void X(dht_r2hc_register)(planner *p)
{
     REGISTER_SOLVER(p, mksolver());
}