Mercurial > hg > batch-feature-extraction-tool
view Lib/fftw-3.2.1/rdft/.svn/text-base/rank-geq2.c.svn-base @ 1:e86e9c111b29
Updates stuff that potentially fixes the memory leak and also makes it work on Windows and Linux (Need to test). Still have to fix fftw include for linux in Jucer.
author | David Ronan <d.m.ronan@qmul.ac.uk> |
---|---|
date | Thu, 09 Jul 2015 15:01:32 +0100 |
parents | 25bf17994ef1 |
children |
line wrap: on
line source
/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* plans for RDFT of rank >= 2 (multidimensional) */ /* FIXME: this solver cannot strictly be applied to multidimensional DHTs, since the latter are not separable...up to rnk-1 additional post-processing passes may be required. See also: R. N. Bracewell, O. Buneman, H. Hao, and J. Villasenor, "Fast two-dimensional Hartley transform," Proc. IEEE 74, 1282-1283 (1986). H. Hao and R. N. Bracewell, "A three-dimensional DFT algorithm using the fast Hartley transform," Proc. IEEE 75(2), 264-266 (1987). */ #include "rdft.h" typedef struct { solver super; int spltrnk; const int *buddies; int nbuddies; } S; typedef struct { plan_rdft super; plan *cld1, *cld2; const S *solver; } P; /* Compute multi-dimensional RDFT by applying the two cld plans (lower-rnk RDFTs). */ static void apply(const plan *ego_, R *I, R *O) { const P *ego = (const P *) ego_; plan_rdft *cld1, *cld2; cld1 = (plan_rdft *) ego->cld1; cld1->apply(ego->cld1, I, O); cld2 = (plan_rdft *) ego->cld2; cld2->apply(ego->cld2, O, O); } static void awake(plan *ego_, enum wakefulness wakefulness) { P *ego = (P *) ego_; X(plan_awake)(ego->cld1, wakefulness); X(plan_awake)(ego->cld2, wakefulness); } static void destroy(plan *ego_) { P *ego = (P *) ego_; X(plan_destroy_internal)(ego->cld2); X(plan_destroy_internal)(ego->cld1); } static void print(const plan *ego_, printer *p) { const P *ego = (const P *) ego_; const S *s = ego->solver; p->print(p, "(rdft-rank>=2/%d%(%p%)%(%p%))", s->spltrnk, ego->cld1, ego->cld2); } static int picksplit(const S *ego, const tensor *sz, int *rp) { A(sz->rnk > 1); /* cannot split rnk <= 1 */ if (!X(pickdim)(ego->spltrnk, ego->buddies, ego->nbuddies, sz, 1, rp)) return 0; *rp += 1; /* convert from dim. index to rank */ if (*rp >= sz->rnk) /* split must reduce rank */ return 0; return 1; } static int applicable0(const solver *ego_, const problem *p_, int *rp) { const problem_rdft *p = (const problem_rdft *) p_; const S *ego = (const S *)ego_; return (1 && FINITE_RNK(p->sz->rnk) && FINITE_RNK(p->vecsz->rnk) && p->sz->rnk >= 2 && picksplit(ego, p->sz, rp) ); } /* TODO: revise this. */ static int applicable(const solver *ego_, const problem *p_, const planner *plnr, int *rp) { const S *ego = (const S *)ego_; if (!applicable0(ego_, p_, rp)) return 0; if (NO_RANK_SPLITSP(plnr) && (ego->spltrnk != ego->buddies[0])) return 0; if (NO_UGLYP(plnr)) { /* Heuristic: if the vector stride is greater than the transform sz, don't use (prefer to do the vector loop first with a vrank-geq1 plan). */ const problem_rdft *p = (const problem_rdft *) p_; if (p->vecsz->rnk > 0 && X(tensor_min_stride)(p->vecsz) > X(tensor_max_index)(p->sz)) return 0; } return 1; } static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) { const S *ego = (const S *) ego_; const problem_rdft *p; P *pln; plan *cld1 = 0, *cld2 = 0; tensor *sz1, *sz2, *vecszi, *sz2i; int spltrnk; static const plan_adt padt = { X(rdft_solve), awake, print, destroy }; if (!applicable(ego_, p_, plnr, &spltrnk)) return (plan *) 0; p = (const problem_rdft *) p_; X(tensor_split)(p->sz, &sz1, spltrnk, &sz2); vecszi = X(tensor_copy_inplace)(p->vecsz, INPLACE_OS); sz2i = X(tensor_copy_inplace)(sz2, INPLACE_OS); cld1 = X(mkplan_d)(plnr, X(mkproblem_rdft_d)(X(tensor_copy)(sz2), X(tensor_append)(p->vecsz, sz1), p->I, p->O, p->kind + spltrnk)); if (!cld1) goto nada; cld2 = X(mkplan_d)(plnr, X(mkproblem_rdft_d)( X(tensor_copy_inplace)(sz1, INPLACE_OS), X(tensor_append)(vecszi, sz2i), p->O, p->O, p->kind)); if (!cld2) goto nada; pln = MKPLAN_RDFT(P, &padt, apply); pln->cld1 = cld1; pln->cld2 = cld2; pln->solver = ego; X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops); X(tensor_destroy4)(sz2, sz1, vecszi, sz2i); return &(pln->super.super); nada: X(plan_destroy_internal)(cld2); X(plan_destroy_internal)(cld1); X(tensor_destroy4)(sz2, sz1, vecszi, sz2i); return (plan *) 0; } static solver *mksolver(int spltrnk, const int *buddies, int nbuddies) { static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; S *slv = MKSOLVER(S, &sadt); slv->spltrnk = spltrnk; slv->buddies = buddies; slv->nbuddies = nbuddies; return &(slv->super); } void X(rdft_rank_geq2_register)(planner *p) { int i; static const int buddies[] = { 1, 0, -2 }; const int nbuddies = (int)(sizeof(buddies) / sizeof(buddies[0])); for (i = 0; i < nbuddies; ++i) REGISTER_SOLVER(p, mksolver(buddies[i], buddies, nbuddies)); /* FIXME: Should we try more buddies? See also dft/rank-geq2. */ }