view Lib/fftw-3.2.1/libbench2/verify-rdft2.c @ 1:e86e9c111b29

Updates stuff that potentially fixes the memory leak and also makes it work on Windows and Linux (Need to test). Still have to fix fftw include for linux in Jucer.
author David Ronan <d.m.ronan@qmul.ac.uk>
date Thu, 09 Jul 2015 15:01:32 +0100
parents 25bf17994ef1
children
line wrap: on
line source
/*
 * Copyright (c) 2003, 2007-8 Matteo Frigo
 * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */


#include "verify.h"

/* copy real A into real B, using output stride of A and input stride of B */
typedef struct {
     dotens2_closure k;
     R *ra;
     R *rb;
} cpyr_closure;

static void cpyr0(dotens2_closure *k_,
                  int indxa, int ondxa, int indxb, int ondxb)
{
     cpyr_closure *k = (cpyr_closure *)k_;
     k->rb[indxb] = k->ra[ondxa];
     UNUSED(indxa); UNUSED(ondxb);
}

static void cpyr(R *ra, const bench_tensor *sza, 
		 R *rb, const bench_tensor *szb)
{
     cpyr_closure k;
     k.k.apply = cpyr0;
     k.ra = ra; k.rb = rb;
     bench_dotens2(sza, szb, &k.k);
}

/* copy unpacked halfcomplex A[n] into packed-complex B[n], using output stride
   of A and input stride of B.  Only copies non-redundant half; other
   half must be copied via mkhermitian. */
typedef struct {
     dotens2_closure k;
     int n;
     int as;
     int scalea;
     R *ra, *ia;
     R *rb, *ib;
} cpyhc2_closure;

static void cpyhc20(dotens2_closure *k_, 
		    int indxa, int ondxa, int indxb, int ondxb)
{
     cpyhc2_closure *k = (cpyhc2_closure *)k_;
     int i, n = k->n;
     int scalea = k->scalea;
     int as = k->as * scalea;
     R *ra = k->ra + ondxa * scalea, *ia = k->ia + ondxa * scalea;
     R *rb = k->rb + indxb, *ib = k->ib + indxb;
     UNUSED(indxa); UNUSED(ondxb);

     for (i = 0; i < n/2 + 1; ++i) {
	  rb[2*i] = ra[as*i];
	  ib[2*i] = ia[as*i];
     }
}

static void cpyhc2(R *ra, R *ia,
		   const bench_tensor *sza, const bench_tensor *vecsza,
		   int scalea,
		   R *rb, R *ib, const bench_tensor *szb)
{
     cpyhc2_closure k;
     BENCH_ASSERT(sza->rnk <= 1);
     k.k.apply = cpyhc20;
     k.n = tensor_sz(sza);
     k.scalea = scalea;
     if (!FINITE_RNK(sza->rnk) || sza->rnk == 0)
	  k.as = 0;
     else
	  k.as = sza->dims[0].os;
     k.ra = ra; k.ia = ia; k.rb = rb; k.ib = ib;
     bench_dotens2(vecsza, szb, &k.k);
}

/* icpyhc2 is the inverse of cpyhc2 */

static void icpyhc20(dotens2_closure *k_, 
		     int indxa, int ondxa, int indxb, int ondxb)
{
     cpyhc2_closure *k = (cpyhc2_closure *)k_;
     int i, n = k->n;
     int scalea = k->scalea;
     int as = k->as * scalea;
     R *ra = k->ra + indxa * scalea, *ia = k->ia + indxa * scalea;
     R *rb = k->rb + ondxb, *ib = k->ib + ondxb;
     UNUSED(ondxa); UNUSED(indxb);

     for (i = 0; i < n/2 + 1; ++i) {
	  ra[as*i] = rb[2*i];
	  ia[as*i] = ib[2*i];
     }
}

static void icpyhc2(R *ra, R *ia, 
		    const bench_tensor *sza, const bench_tensor *vecsza,
		    int scalea,
		    R *rb, R *ib, const bench_tensor *szb)
{
     cpyhc2_closure k;
     BENCH_ASSERT(sza->rnk <= 1);
     k.k.apply = icpyhc20;
     k.n = tensor_sz(sza);
     k.scalea = scalea;
     if (!FINITE_RNK(sza->rnk) || sza->rnk == 0)
	  k.as = 0;
     else
	  k.as = sza->dims[0].is;
     k.ra = ra; k.ia = ia; k.rb = rb; k.ib = ib;
     bench_dotens2(vecsza, szb, &k.k);
}

typedef struct {
     dofft_closure k;
     bench_problem *p;
} dofft_rdft2_closure;

static void rdft2_apply(dofft_closure *k_, 
			bench_complex *in, bench_complex *out)
{
     dofft_rdft2_closure *k = (dofft_rdft2_closure *)k_;
     bench_problem *p = k->p;
     bench_tensor *totalsz, *pckdsz, *totalsz_swap, *pckdsz_swap;
     bench_tensor *probsz2, *totalsz2, *pckdsz2;
     bench_tensor *probsz2_swap, *totalsz2_swap, *pckdsz2_swap;
     bench_real *ri, *ii, *ro, *io;
     int n2, totalscale;

     totalsz = tensor_append(p->vecsz, p->sz);
     pckdsz = verify_pack(totalsz, 2);
     n2 = tensor_sz(totalsz);
     if (FINITE_RNK(p->sz->rnk) && p->sz->rnk > 0)
	  n2 = (n2 / p->sz->dims[p->sz->rnk - 1].n) * 
	       (p->sz->dims[p->sz->rnk - 1].n / 2 + 1);
     ri = (bench_real *) p->in;
     ro = (bench_real *) p->out;

     if (FINITE_RNK(p->sz->rnk) && p->sz->rnk > 0 && n2 > 0) {
	  probsz2 = tensor_copy_sub(p->sz, p->sz->rnk - 1, 1);
	  totalsz2 = tensor_copy_sub(totalsz, 0, totalsz->rnk - 1);
	  pckdsz2 = tensor_copy_sub(pckdsz, 0, pckdsz->rnk - 1);
     }
     else {
	  probsz2 = mktensor(0);
	  totalsz2 = tensor_copy(totalsz);
	  pckdsz2 = tensor_copy(pckdsz);
     }

     totalsz_swap = tensor_copy_swapio(totalsz);
     pckdsz_swap = tensor_copy_swapio(pckdsz);
     totalsz2_swap = tensor_copy_swapio(totalsz2);
     pckdsz2_swap = tensor_copy_swapio(pckdsz2);
     probsz2_swap = tensor_copy_swapio(probsz2);

     /* confusion: the stride is the distance between complex elements
	when using interleaved format, but it is the distance between
	real elements when using split format */
     if (p->split) {
	  ii = p->ini ? (bench_real *) p->ini : ri + n2;
	  io = p->outi ? (bench_real *) p->outi : ro + n2;
	  totalscale = 1;
     } else {
	  ii = p->ini ? (bench_real *) p->ini : ri + 1;
	  io = p->outi ? (bench_real *) p->outi : ro + 1;
	  totalscale = 2;
     }

     if (p->sign < 0) { /* R2HC */
	  int N, vN, i;
	  cpyr(&c_re(in[0]), pckdsz, ri, totalsz);
	  after_problem_rcopy_from(p, ri);
	  doit(1, p);
	  after_problem_hccopy_to(p, ro, io);
	  if (k->k.recopy_input)
	       cpyr(ri, totalsz_swap, &c_re(in[0]), pckdsz_swap);
	  cpyhc2(ro, io, probsz2, totalsz2, totalscale,
		 &c_re(out[0]), &c_im(out[0]), pckdsz2);
	  N = tensor_sz(p->sz);
	  vN = tensor_sz(p->vecsz);
	  for (i = 0; i < vN; ++i)
	       mkhermitian(out + i*N, p->sz->rnk, p->sz->dims, 1);
     }
     else { /* HC2R */
	  icpyhc2(ri, ii, probsz2, totalsz2, totalscale,
		  &c_re(in[0]), &c_im(in[0]), pckdsz2);
	  after_problem_hccopy_from(p, ri, ii);
	  doit(1, p);
	  after_problem_rcopy_to(p, ro);
	  if (k->k.recopy_input)
	       cpyhc2(ri, ii, probsz2_swap, totalsz2_swap, totalscale,
		      &c_re(in[0]), &c_im(in[0]), pckdsz2_swap);
	  mkreal(out, tensor_sz(pckdsz));
	  cpyr(ro, totalsz, &c_re(out[0]), pckdsz);
     }

     tensor_destroy(totalsz);
     tensor_destroy(pckdsz);
     tensor_destroy(totalsz_swap);
     tensor_destroy(pckdsz_swap);
     tensor_destroy(probsz2);
     tensor_destroy(totalsz2);
     tensor_destroy(pckdsz2);
     tensor_destroy(probsz2_swap);
     tensor_destroy(totalsz2_swap);
     tensor_destroy(pckdsz2_swap);
}

void verify_rdft2(bench_problem *p, int rounds, double tol, errors *e)
{
     C *inA, *inB, *inC, *outA, *outB, *outC, *tmp;
     int n, vecn, N;
     dofft_rdft2_closure k;

     BENCH_ASSERT(p->kind == PROBLEM_REAL);

     if (!FINITE_RNK(p->sz->rnk) || !FINITE_RNK(p->vecsz->rnk))
	  return;      /* give up */

     k.k.apply = rdft2_apply;
     k.k.recopy_input = 0;
     k.p = p;

     if (rounds == 0)
	  rounds = 20;  /* default value */

     n = tensor_sz(p->sz);
     vecn = tensor_sz(p->vecsz);
     N = n * vecn;

     inA = (C *) bench_malloc(N * sizeof(C));
     inB = (C *) bench_malloc(N * sizeof(C));
     inC = (C *) bench_malloc(N * sizeof(C));
     outA = (C *) bench_malloc(N * sizeof(C));
     outB = (C *) bench_malloc(N * sizeof(C));
     outC = (C *) bench_malloc(N * sizeof(C));
     tmp = (C *) bench_malloc(N * sizeof(C));

     e->i = impulse(&k.k, n, vecn, inA, inB, inC, outA, outB, outC, 
		    tmp, rounds, tol);
     e->l = linear(&k.k, 1, N, inA, inB, inC, outA, outB, outC,
		   tmp, rounds, tol);

     e->s = 0.0;
     if (p->sign < 0)
	  e->s = dmax(e->s, tf_shift(&k.k, 1, p->sz, n, vecn, p->sign,
				     inA, inB, outA, outB, 
				     tmp, rounds, tol, TIME_SHIFT));
     else
	  e->s = dmax(e->s, tf_shift(&k.k, 1, p->sz, n, vecn, p->sign,
				     inA, inB, outA, outB, 
				     tmp, rounds, tol, FREQ_SHIFT));
     
     if (!p->in_place && !p->destroy_input)
	  preserves_input(&k.k, p->sign < 0 ? mkreal : mkhermitian1,
			  N, inA, inB, outB, rounds);

     bench_free(tmp);
     bench_free(outC);
     bench_free(outB);
     bench_free(outA);
     bench_free(inC);
     bench_free(inB);
     bench_free(inA);
}

void accuracy_rdft2(bench_problem *p, int rounds, int impulse_rounds,
		    double t[6])
{
     dofft_rdft2_closure k;
     int n;
     C *a, *b;

     BENCH_ASSERT(p->kind == PROBLEM_REAL);
     BENCH_ASSERT(p->sz->rnk == 1);
     BENCH_ASSERT(p->vecsz->rnk == 0);

     k.k.apply = rdft2_apply;
     k.k.recopy_input = 0;
     k.p = p;
     n = tensor_sz(p->sz);

     a = (C *) bench_malloc(n * sizeof(C));
     b = (C *) bench_malloc(n * sizeof(C));
     accuracy_test(&k.k, p->sign < 0 ? mkreal : mkhermitian1, p->sign, 
		   n, a, b, rounds, impulse_rounds, t);
     bench_free(b);
     bench_free(a);
}