view Lib/fftw-3.2.1/libbench2/verify-dft.c @ 1:e86e9c111b29

Updates stuff that potentially fixes the memory leak and also makes it work on Windows and Linux (Need to test). Still have to fix fftw include for linux in Jucer.
author David Ronan <d.m.ronan@qmul.ac.uk>
date Thu, 09 Jul 2015 15:01:32 +0100
parents 25bf17994ef1
children
line wrap: on
line source
/*
 * Copyright (c) 2003, 2007-8 Matteo Frigo
 * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */


#include "verify.h"

/* copy A into B, using output stride of A and input stride of B */
typedef struct {
     dotens2_closure k;
     R *ra; R *ia;
     R *rb; R *ib;
     int scalea, scaleb;
} cpy_closure;

static void cpy0(dotens2_closure *k_, 
		 int indxa, int ondxa, int indxb, int ondxb)
{
     cpy_closure *k = (cpy_closure *)k_;
     k->rb[indxb * k->scaleb] = k->ra[ondxa * k->scalea];
     k->ib[indxb * k->scaleb] = k->ia[ondxa * k->scalea];
     UNUSED(indxa); UNUSED(ondxb);
}

static void cpy(R *ra, R *ia, const bench_tensor *sza, int scalea,
		R *rb, R *ib, const bench_tensor *szb, int scaleb)
{
     cpy_closure k;
     k.k.apply = cpy0;
     k.ra = ra; k.ia = ia; k.rb = rb; k.ib = ib;
     k.scalea = scalea; k.scaleb = scaleb;
     bench_dotens2(sza, szb, &k.k);
}

typedef struct {
     dofft_closure k;
     bench_problem *p;
} dofft_dft_closure;

static void dft_apply(dofft_closure *k_, bench_complex *in, bench_complex *out)
{
     dofft_dft_closure *k = (dofft_dft_closure *)k_;
     bench_problem *p = k->p;
     bench_tensor *totalsz, *pckdsz;
     bench_tensor *totalsz_swap, *pckdsz_swap;
     bench_real *ri, *ii, *ro, *io;
     int totalscale;

     totalsz = tensor_append(p->vecsz, p->sz);
     pckdsz = verify_pack(totalsz, 2);
     ri = (bench_real *) p->in;
     ro = (bench_real *) p->out;

     totalsz_swap = tensor_copy_swapio(totalsz);
     pckdsz_swap = tensor_copy_swapio(pckdsz);

     /* confusion: the stride is the distance between complex elements
	when using interleaved format, but it is the distance between
	real elements when using split format */
     if (p->split) {
	  ii = p->ini ? (bench_real *) p->ini : ri + p->iphyssz;
	  io = p->outi ? (bench_real *) p->outi : ro + p->ophyssz;
	  totalscale = 1;
     } else {
	  ii = p->ini ? (bench_real *) p->ini : ri + 1;
	  io = p->outi ? (bench_real *) p->outi : ro + 1;
	  totalscale = 2;
     }

     cpy(&c_re(in[0]), &c_im(in[0]), pckdsz, 1,
	    ri, ii, totalsz, totalscale);
     after_problem_ccopy_from(p, ri, ii);
     doit(1, p);
     after_problem_ccopy_to(p, ro, io);
     if (k->k.recopy_input)
	  cpy(ri, ii, totalsz_swap, totalscale,
	      &c_re(in[0]), &c_im(in[0]), pckdsz_swap, 1);
     cpy(ro, io, totalsz, totalscale,
	 &c_re(out[0]), &c_im(out[0]), pckdsz, 1);

     tensor_destroy(totalsz);
     tensor_destroy(pckdsz);
     tensor_destroy(totalsz_swap);
     tensor_destroy(pckdsz_swap);
}

void verify_dft(bench_problem *p, int rounds, double tol, errors *e)
{
     C *inA, *inB, *inC, *outA, *outB, *outC, *tmp;
     int n, vecn, N;
     dofft_dft_closure k;

     BENCH_ASSERT(p->kind == PROBLEM_COMPLEX);

     k.k.apply = dft_apply;
     k.k.recopy_input = 0;
     k.p = p;

     if (rounds == 0)
	  rounds = 20;  /* default value */

     n = tensor_sz(p->sz);
     vecn = tensor_sz(p->vecsz);
     N = n * vecn;

     inA = (C *) bench_malloc(N * sizeof(C));
     inB = (C *) bench_malloc(N * sizeof(C));
     inC = (C *) bench_malloc(N * sizeof(C));
     outA = (C *) bench_malloc(N * sizeof(C));
     outB = (C *) bench_malloc(N * sizeof(C));
     outC = (C *) bench_malloc(N * sizeof(C));
     tmp = (C *) bench_malloc(N * sizeof(C));

     e->i = impulse(&k.k, n, vecn, inA, inB, inC, outA, outB, outC, 
		    tmp, rounds, tol);
     e->l = linear(&k.k, 0, N, inA, inB, inC, outA, outB, outC,
		   tmp, rounds, tol);

     e->s = 0.0;
     e->s = dmax(e->s, tf_shift(&k.k, 0, p->sz, n, vecn, p->sign,
				inA, inB, outA, outB, 
				tmp, rounds, tol, TIME_SHIFT));
     e->s = dmax(e->s, tf_shift(&k.k, 0, p->sz, n, vecn, p->sign,
				inA, inB, outA, outB, 
				tmp, rounds, tol, FREQ_SHIFT));

     if (!p->in_place && !p->destroy_input)
	  preserves_input(&k.k, 0, N, inA, inB, outB, rounds);

     bench_free(tmp);
     bench_free(outC);
     bench_free(outB);
     bench_free(outA);
     bench_free(inC);
     bench_free(inB);
     bench_free(inA);
}


void accuracy_dft(bench_problem *p, int rounds, int impulse_rounds,
		  double t[6])
{
     dofft_dft_closure k;
     int n;
     C *a, *b;

     BENCH_ASSERT(p->kind == PROBLEM_COMPLEX);
     BENCH_ASSERT(p->sz->rnk == 1);
     BENCH_ASSERT(p->vecsz->rnk == 0);

     k.k.apply = dft_apply;
     k.k.recopy_input = 0;
     k.p = p;
     n = tensor_sz(p->sz);

     a = (C *) bench_malloc(n * sizeof(C));
     b = (C *) bench_malloc(n * sizeof(C));
     accuracy_test(&k.k, 0, p->sign, n, a, b, rounds, impulse_rounds, t);
     bench_free(b);
     bench_free(a);
}