Mercurial > hg > batch-feature-extraction-tool
view Lib/fftw-3.2.1/genfft/genutil.ml @ 1:e86e9c111b29
Updates stuff that potentially fixes the memory leak and also makes it work on Windows and Linux (Need to test). Still have to fix fftw include for linux in Jucer.
author | David Ronan <d.m.ronan@qmul.ac.uk> |
---|---|
date | Thu, 09 Jul 2015 15:01:32 +0100 |
parents | 25bf17994ef1 |
children |
line wrap: on
line source
(* * Copyright (c) 1997-1999 Massachusetts Institute of Technology * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * *) (* utilities common to all generators *) open Util let choose_simd a b = if !Simdmagic.simd_mode then b else a let unique_array n = array n (fun _ -> Unique.make ()) let unique_array_c n = array n (fun _ -> (Unique.make (), Unique.make ())) let unique_v_array_c veclen n = array veclen (fun _ -> unique_array_c n) let locative_array_c n rarr iarr loc vs = array n (fun i -> let klass = Unique.make () in let (rloc, iloc) = loc i in (Variable.make_locative rloc klass rarr i vs, Variable.make_locative iloc klass iarr i vs)) let locative_v_array_c veclen n rarr iarr loc vs = array veclen (fun v -> array n (fun i -> let klass = Unique.make () in let (rloc, iloc) = loc v i in (Variable.make_locative rloc klass (rarr v) i vs, Variable.make_locative iloc klass (iarr v) i vs))) let temporary_array n = array n (fun i -> Variable.make_temporary ()) let temporary_array_c n = let tmpr = temporary_array n and tmpi = temporary_array n in array n (fun i -> (tmpr i, tmpi i)) let temporary_v_array_c veclen n = array veclen (fun v -> temporary_array_c n) let temporary_array_c n = let tmpr = temporary_array n and tmpi = temporary_array n in array n (fun i -> (tmpr i, tmpi i)) let load_c (vr, vi) = Complex.make (Expr.Load vr, Expr.Load vi) let load_r (vr, vi) = Complex.make (Expr.Load vr, Expr.Num (Number.zero)) let twiddle_array nt w = array (nt/2) (fun i -> let stride = choose_simd (C.SInteger 1) (C.SConst "TWVL") and klass = Unique.make () in let (refr, refi) = (C.array_subscript w stride (2 * i), C.array_subscript w stride (2 * i + 1)) in let (kr, ki) = (Variable.make_constant klass refr, Variable.make_constant klass refi) in load_c (kr, ki)) let load_array_c n var = array n (fun i -> load_c (var i)) let load_array_r n var = array n (fun i -> load_r (var i)) let load_array_hc n var = array n (fun i -> if (i < n - i) then load_c (var i) else if (i > n - i) then Complex.times Complex.i (load_c (var (n - i))) else load_r (var i)) let load_v_array_c veclen n var = array veclen (fun v -> load_array_c n (var v)) let store_c (vr, vi) x = [Complex.store_real vr x; Complex.store_imag vi x] let store_r (vr, vi) x = Complex.store_real vr x let store_i (vr, vi) x = Complex.store_imag vi x let assign_array_c n dst src = List.flatten (rmap (iota n) (fun i -> let (ar, ai) = Complex.assign (dst i) (src i) in [ar; ai])) let assign_v_array_c veclen n dst src = List.flatten (rmap (iota veclen) (fun v -> assign_array_c n (dst v) (src v))) let vassign_v_array_c veclen n dst src = List.flatten (rmap (iota n) (fun i -> List.flatten (rmap (iota veclen) (fun v -> let (ar, ai) = Complex.assign (dst v i) (src v i) in [ar; ai])))) let store_array_r n dst src = rmap (iota n) (fun i -> store_r (dst i) (src i)) let store_array_c n dst src = List.flatten (rmap (iota n) (fun i -> store_c (dst i) (src i))) let store_array_hc n dst src = List.flatten (rmap (iota n) (fun i -> if (i < n - i) then store_c (dst i) (src i) else if (i > n - i) then [] else [store_r (dst i) (Complex.real (src i))])) let store_v_array_c veclen n dst src = List.flatten (rmap (iota veclen) (fun v -> store_array_c n (dst v) (src v))) let elementwise f n a = array n (fun i -> f (a i)) let conj_array_c = elementwise Complex.conj let real_array_c = elementwise Complex.real let imag_array_c = elementwise Complex.imag let elementwise_v f veclen n a = array veclen (fun v -> array n (fun i -> f (a v i))) let conj_v_array_c = elementwise_v Complex.conj let real_v_array_c = elementwise_v Complex.real let imag_v_array_c = elementwise_v Complex.imag let transpose f i j = f j i let symmetrize f i j = if i <= j then f i j else f j i (* utilities for command-line parsing *) let standard_arg_parse_fail _ = failwith "too many arguments" let dump_dag alist = let fnam = !Magic.dag_dump_file in if (String.length fnam > 0) then let ochan = open_out fnam in begin To_alist.dump (output_string ochan) alist; close_out ochan; end let dump_alist alist = let fnam = !Magic.alist_dump_file in if (String.length fnam > 0) then let ochan = open_out fnam in begin Expr.dump (output_string ochan) alist; close_out ochan; end let dump_asched asched = let fnam = !Magic.asched_dump_file in if (String.length fnam > 0) then let ochan = open_out fnam in begin Annotate.dump (output_string ochan) asched; close_out ochan; end (* utilities for optimization *) let standard_scheduler dag = let optim = Algsimp.algsimp dag in let alist = To_alist.to_assignments optim in let _ = dump_alist alist in let _ = dump_dag alist in if !Magic.precompute_twiddles then Schedule.isolate_precomputations_and_schedule alist else Schedule.schedule alist let standard_optimizer dag = let sched = standard_scheduler dag in let annot = Annotate.annotate [] sched in let _ = dump_asched annot in annot let size = ref None let sign = ref (-1) let speclist = [ "-n", Arg.Int(fun i -> size := Some i), " generate a codelet of size <n>"; "-sign", Arg.Int(fun i -> if (i > 0) then sign := 1 else sign := (-1)), " sign of transform"; ] let check_size () = match !size with | Some i -> i | None -> failwith "must specify -n" let expand_name name = if name = "" then "noname" else name let declare_register_fcn name = if name = "" then "void NAME(planner *p)\n" else "void X(codelet_" ^ name ^ ")(planner *p)\n" let stringify name = if name = "" then "STRINGIZE(NAME)" else "\"" ^ name ^ "\"" let parse user_speclist usage = Arg.parse (user_speclist @ speclist @ Magic.speclist @ Simdmagic.speclist) standard_arg_parse_fail usage let rec list_to_c = function [] -> "" | [a] -> (string_of_int a) | a :: b -> (string_of_int a) ^ ", " ^ (list_to_c b) let rec list_to_comma = function | [a; b] -> C.Comma (a, b) | a :: b -> C.Comma (a, list_to_comma b) | _ -> failwith "list_to_comma" type stride = Stride_variable | Fixed_int of int | Fixed_string of string let either_stride a b = match a with Fixed_int x -> C.SInteger x | Fixed_string x -> C.SConst x | _ -> b let stride_fixed = function Stride_variable -> false | _ -> true let arg_to_stride s = try Fixed_int (int_of_string s) with Failure "int_of_string" -> Fixed_string s let stride_to_solverparm = function Stride_variable -> "0" | Fixed_int x -> string_of_int x | Fixed_string x -> x let stride_to_string s = function Stride_variable -> s | Fixed_int x -> string_of_int x | Fixed_string x -> x (* output the command line *) let cmdline () = List.fold_right (fun a b -> a ^ " " ^ b) (Array.to_list Sys.argv) "" let unparse tree = "/* Generated by: " ^ (cmdline ()) ^ "*/\n\n" ^ (C.print_cost tree) ^ (if String.length !Magic.inklude > 0 then (Printf.sprintf "#include \"%s\"\n\n" !Magic.inklude) else "") ^ (if !Simdmagic.simd_mode then Simd.unparse_function tree else C.unparse_function tree) let add_constants ast = let mergedecls = function C.Block (d1, [C.Block (d2, s)]) -> C.Block (d1 @ d2, s) | x -> x and extract_constants = if !Simdmagic.simd_mode then Simd.extract_constants else C.extract_constants in mergedecls (C.Block (extract_constants ast, [ast])) let twinstr_to_string vl x = if !Simdmagic.simd_mode then Twiddle.twinstr_to_simd_string vl x else Twiddle.twinstr_to_c_string x let make_volatile_stride x = C.CCall ("MAKE_VOLATILE_STRIDE", x)