Mercurial > hg > batch-feature-extraction-tool
view Lib/fftw-3.2.1/genfft/algsimp.ml @ 1:e86e9c111b29
Updates stuff that potentially fixes the memory leak and also makes it work on Windows and Linux (Need to test). Still have to fix fftw include for linux in Jucer.
author | David Ronan <d.m.ronan@qmul.ac.uk> |
---|---|
date | Thu, 09 Jul 2015 15:01:32 +0100 |
parents | 25bf17994ef1 |
children |
line wrap: on
line source
(* * Copyright (c) 1997-1999 Massachusetts Institute of Technology * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * *) open Util open Expr let node_insert x = Assoctable.insert Expr.hash x let node_lookup x = Assoctable.lookup Expr.hash (==) x (************************************************************* * Algebraic simplifier/elimination of common subexpressions *************************************************************) module AlgSimp : sig val algsimp : expr list -> expr list end = struct open Monads.StateMonad open Monads.MemoMonad open Assoctable let fetchSimp = fetchState >>= fun (s, _) -> returnM s let storeSimp s = fetchState >>= (fun (_, c) -> storeState (s, c)) let lookupSimpM key = fetchSimp >>= fun table -> returnM (node_lookup key table) let insertSimpM key value = fetchSimp >>= fun table -> storeSimp (node_insert key value table) let subset a b = List.for_all (fun x -> List.exists (fun y -> x == y) b) a let structurallyEqualCSE a b = match (a, b) with | (Num a, Num b) -> Number.equal a b | (NaN a, NaN b) -> a == b | (Load a, Load b) -> Variable.same a b | (Times (a, a'), Times (b, b')) -> ((a == b) && (a' == b')) or ((a == b') && (a' == b)) | (CTimes (a, a'), CTimes (b, b')) -> ((a == b) && (a' == b')) or ((a == b') && (a' == b)) | (CTimesJ (a, a'), CTimesJ (b, b')) -> ((a == b) && (a' == b')) | (Plus a, Plus b) -> subset a b && subset b a | (Uminus a, Uminus b) -> (a == b) | _ -> false let hashCSE x = if (!Magic.randomized_cse) then Oracle.hash x else Expr.hash x let equalCSE a b = if (!Magic.randomized_cse) then (structurallyEqualCSE a b || Oracle.likely_equal a b) else structurallyEqualCSE a b let fetchCSE = fetchState >>= fun (_, c) -> returnM c let storeCSE c = fetchState >>= (fun (s, _) -> storeState (s, c)) let lookupCSEM key = fetchCSE >>= fun table -> returnM (Assoctable.lookup hashCSE equalCSE key table) let insertCSEM key value = fetchCSE >>= fun table -> storeCSE (Assoctable.insert hashCSE key value table) (* memoize both x and Uminus x (unless x is already negated) *) let identityM x = let memo x = memoizing lookupCSEM insertCSEM returnM x in match x with Uminus _ -> memo x | _ -> memo x >>= fun x' -> memo (Uminus x') >> returnM x' let makeNode = identityM (* simplifiers for various kinds of nodes *) let rec snumM = function n when Number.is_zero n -> makeNode (Num (Number.zero)) | n when Number.negative n -> makeNode (Num (Number.negate n)) >>= suminusM | n -> makeNode (Num n) and suminusM = function Uminus x -> makeNode x | Num a when (Number.is_zero a) -> snumM Number.zero | a -> makeNode (Uminus a) and stimesM = function | (Uminus a, b) -> stimesM (a, b) >>= suminusM | (a, Uminus b) -> stimesM (a, b) >>= suminusM | (NaN I, CTimes (a, b)) -> stimesM (NaN I, b) >>= fun ib -> sctimesM (a, ib) | (NaN I, CTimesJ (a, b)) -> stimesM (NaN I, b) >>= fun ib -> sctimesjM (a, ib) | (Num a, Num b) -> snumM (Number.mul a b) | (Num a, Times (Num b, c)) -> snumM (Number.mul a b) >>= fun x -> stimesM (x, c) | (Num a, b) when Number.is_zero a -> snumM Number.zero | (Num a, b) when Number.is_one a -> makeNode b | (Num a, b) when Number.is_mone a -> suminusM b | (a, b) when is_known_constant b && not (is_known_constant a) -> stimesM (b, a) | (a, b) -> makeNode (Times (a, b)) and sctimesM = function | (Uminus a, b) -> sctimesM (a, b) >>= suminusM | (a, Uminus b) -> sctimesM (a, b) >>= suminusM | (a, b) -> makeNode (CTimes (a, b)) and sctimesjM = function | (Uminus a, b) -> sctimesjM (a, b) >>= suminusM | (a, Uminus b) -> sctimesjM (a, b) >>= suminusM | (a, b) -> makeNode (CTimesJ (a, b)) and reduce_sumM x = match x with [] -> returnM [] | [Num a] -> if (Number.is_zero a) then returnM [] else returnM x | [Uminus (Num a)] -> if (Number.is_zero a) then returnM [] else returnM x | (Num a) :: (Num b) :: s -> snumM (Number.add a b) >>= fun x -> reduce_sumM (x :: s) | (Num a) :: (Uminus (Num b)) :: s -> snumM (Number.sub a b) >>= fun x -> reduce_sumM (x :: s) | (Uminus (Num a)) :: (Num b) :: s -> snumM (Number.sub b a) >>= fun x -> reduce_sumM (x :: s) | (Uminus (Num a)) :: (Uminus (Num b)) :: s -> snumM (Number.add a b) >>= suminusM >>= fun x -> reduce_sumM (x :: s) | ((Num _) as a) :: b :: s -> reduce_sumM (b :: a :: s) | ((Uminus (Num _)) as a) :: b :: s -> reduce_sumM (b :: a :: s) | a :: s -> reduce_sumM s >>= fun s' -> returnM (a :: s') and collectible1 = function | NaN _ -> false | Uminus x -> collectible1 x | _ -> true and collectible (a, b) = collectible1 a (* collect common factors: ax + bx -> (a+b)x *) and collectM which x = let rec findCoeffM which = function | Times (a, b) when collectible (which (a, b)) -> returnM (which (a, b)) | Uminus x -> findCoeffM which x >>= fun (coeff, b) -> suminusM coeff >>= fun mcoeff -> returnM (mcoeff, b) | x -> snumM Number.one >>= fun one -> returnM (one, x) and separateM xpr = function [] -> returnM ([], []) | a :: b -> separateM xpr b >>= fun (w, wo) -> (* try first factor *) findCoeffM (fun (a, b) -> (a, b)) a >>= fun (c, x) -> if (xpr == x) && collectible (c, x) then returnM (c :: w, wo) else (* try second factor *) findCoeffM (fun (a, b) -> (b, a)) a >>= fun (c, x) -> if (xpr == x) && collectible (c, x) then returnM (c :: w, wo) else returnM (w, a :: wo) in match x with [] -> returnM x | [a] -> returnM x | a :: b -> findCoeffM which a >>= fun (_, xpr) -> separateM xpr x >>= fun (w, wo) -> collectM which wo >>= fun wo' -> splusM w >>= fun w' -> stimesM (w', xpr) >>= fun t' -> returnM (t':: wo') and mangleSumM x = returnM x >>= reduce_sumM >>= collectM (fun (a, b) -> (a, b)) >>= collectM (fun (a, b) -> (b, a)) >>= reduce_sumM >>= deepCollectM !Magic.deep_collect_depth >>= reduce_sumM and reorder_uminus = function (* push all Uminuses to the end *) [] -> [] | ((Uminus _) as a' :: b) -> (reorder_uminus b) @ [a'] | (a :: b) -> a :: (reorder_uminus b) and canonicalizeM = function [] -> snumM Number.zero | [a] -> makeNode a (* one term *) | a -> generateFusedMultAddM (reorder_uminus a) and generateFusedMultAddM = let rec is_multiplication = function | Times (Num a, b) -> true | Uminus (Times (Num a, b)) -> true | _ -> false and separate = function [] -> ([], [], Number.zero) | (Times (Num a, b)) as this :: c -> let (x, y, max) = separate c in let newmax = if (Number.greater a max) then a else max in (this :: x, y, newmax) | (Uminus (Times (Num a, b))) as this :: c -> let (x, y, max) = separate c in let newmax = if (Number.greater a max) then a else max in (this :: x, y, newmax) | this :: c -> let (x, y, max) = separate c in (x, this :: y, max) in fun l -> if !Magic.enable_fma && count is_multiplication l >= 2 then let (w, wo, max) = separate l in snumM (Number.div Number.one max) >>= fun invmax' -> snumM max >>= fun max' -> mapM (fun x -> stimesM (invmax', x)) w >>= splusM >>= fun pw' -> stimesM (max', pw') >>= fun mw' -> splusM (wo @ [mw']) else makeNode (Plus l) and negative = function Uminus _ -> true | _ -> false (* * simplify patterns of the form * * ((c_1 * a + ...) + ...) + (c_2 * a + ...) * * The pattern includes arbitrary coefficients and minus signs. * A common case of this pattern is the butterfly * (a + b) + (a - b) * (a + b) - (a - b) *) (* this whole procedure needs much more thought *) and deepCollectM maxdepth l = let rec findTerms depth x = match x with | Uminus x -> findTerms depth x | Times (Num _, b) -> (findTerms (depth - 1) b) | Plus l when depth > 0 -> x :: List.flatten (List.map (findTerms (depth - 1)) l) | x -> [x] and duplicates = function [] -> [] | a :: b -> if List.memq a b then a :: duplicates b else duplicates b in let rec splitDuplicates depth d x = if (List.memq x d) then snumM (Number.zero) >>= fun zero -> returnM (zero, x) else match x with | Times (a, b) -> splitDuplicates (depth - 1) d a >>= fun (a', xa) -> splitDuplicates (depth - 1) d b >>= fun (b', xb) -> stimesM (a', b') >>= fun ab -> stimesM (a, xb) >>= fun xb' -> stimesM (xa, b) >>= fun xa' -> stimesM (xa, xb) >>= fun xab -> splusM [xa'; xb'; xab] >>= fun x -> returnM (ab, x) | Uminus a -> splitDuplicates depth d a >>= fun (x, y) -> suminusM x >>= fun ux -> suminusM y >>= fun uy -> returnM (ux, uy) | Plus l when depth > 0 -> mapM (splitDuplicates (depth - 1) d) l >>= fun ld -> let (l', d') = List.split ld in splusM l' >>= fun p -> splusM d' >>= fun d'' -> returnM (p, d'') | x -> snumM (Number.zero) >>= fun zero' -> returnM (x, zero') in let l' = List.flatten (List.map (findTerms maxdepth) l) in match duplicates l' with | [] -> returnM l | d -> mapM (splitDuplicates maxdepth d) l >>= fun ld -> let (l', d') = List.split ld in splusM l' >>= fun l'' -> let rec flattenPlusM = function | Plus l -> returnM l | Uminus x -> flattenPlusM x >>= mapM suminusM | x -> returnM [x] in mapM flattenPlusM d' >>= fun d'' -> splusM (List.flatten d'') >>= fun d''' -> mangleSumM [l''; d'''] and splusM l = let fma_heuristics x = if !Magic.enable_fma then match x with | [Uminus (Times _); Times _] -> Some false | [Times _; Uminus (Times _)] -> Some false | [Uminus (_); Times _] -> Some true | [Times _; Uminus (Plus _)] -> Some true | [_; Uminus (Times _)] -> Some false | [Uminus (Times _); _] -> Some false | _ -> None else None in mangleSumM l >>= fun l' -> (* no terms are negative. Don't do anything *) if not (List.exists negative l') then canonicalizeM l' (* all terms are negative. Negate them all and collect the minus sign *) else if List.for_all negative l' then mapM suminusM l' >>= splusM >>= suminusM else match fma_heuristics l' with | Some true -> mapM suminusM l' >>= splusM >>= suminusM | Some false -> canonicalizeM l' | None -> (* Ask the Oracle for the canonical form *) if (not !Magic.randomized_cse) && Oracle.should_flip_sign (Plus l') then mapM suminusM l' >>= splusM >>= suminusM else canonicalizeM l' (* monadic style algebraic simplifier for the dag *) let rec algsimpM x = memoizing lookupSimpM insertSimpM (function | Num a -> snumM a | NaN _ as x -> makeNode x | Plus a -> mapM algsimpM a >>= splusM | Times (a, b) -> (algsimpM a >>= fun a' -> algsimpM b >>= fun b' -> stimesM (a', b')) | CTimes (a, b) -> (algsimpM a >>= fun a' -> algsimpM b >>= fun b' -> sctimesM (a', b')) | CTimesJ (a, b) -> (algsimpM a >>= fun a' -> algsimpM b >>= fun b' -> sctimesjM (a', b')) | Uminus a -> algsimpM a >>= suminusM | Store (v, a) -> algsimpM a >>= fun a' -> makeNode (Store (v, a')) | Load _ as x -> makeNode x) x let initialTable = (empty, empty) let simp_roots = mapM algsimpM let algsimp = runM initialTable simp_roots end (************************************************************* * Network transposition algorithm *************************************************************) module Transpose = struct open Monads.StateMonad open Monads.MemoMonad open Littlesimp let fetchDuals = fetchState let storeDuals = storeState let lookupDualsM key = fetchDuals >>= fun table -> returnM (node_lookup key table) let insertDualsM key value = fetchDuals >>= fun table -> storeDuals (node_insert key value table) let rec visit visited vtable parent_table = function [] -> (visited, parent_table) | node :: rest -> match node_lookup node vtable with | Some _ -> visit visited vtable parent_table rest | None -> let children = match node with | Store (v, n) -> [n] | Plus l -> l | Times (a, b) -> [a; b] | CTimes (a, b) -> [a; b] | CTimesJ (a, b) -> [a; b] | Uminus x -> [x] | _ -> [] in let rec loop t = function [] -> t | a :: rest -> (match node_lookup a t with None -> loop (node_insert a [node] t) rest | Some c -> loop (node_insert a (node :: c) t) rest) in (visit (node :: visited) (node_insert node () vtable) (loop parent_table children) (children @ rest)) let make_transposer parent_table = let rec termM node candidate_parent = match candidate_parent with | Store (_, n) when n == node -> dualM candidate_parent >>= fun x' -> returnM [x'] | Plus (l) when List.memq node l -> dualM candidate_parent >>= fun x' -> returnM [x'] | Times (a, b) when b == node -> dualM candidate_parent >>= fun x' -> returnM [makeTimes (a, x')] | CTimes (a, b) when b == node -> dualM candidate_parent >>= fun x' -> returnM [CTimes (a, x')] | CTimesJ (a, b) when b == node -> dualM candidate_parent >>= fun x' -> returnM [CTimesJ (a, x')] | Uminus n when n == node -> dualM candidate_parent >>= fun x' -> returnM [makeUminus x'] | _ -> returnM [] and dualExpressionM this_node = mapM (termM this_node) (match node_lookup this_node parent_table with | Some a -> a | None -> failwith "bug in dualExpressionM" ) >>= fun l -> returnM (makePlus (List.flatten l)) and dualM this_node = memoizing lookupDualsM insertDualsM (function | Load v as x -> if (Variable.is_constant v) then returnM (Load v) else (dualExpressionM x >>= fun d -> returnM (Store (v, d))) | Store (v, x) -> returnM (Load v) | x -> dualExpressionM x) this_node in dualM let is_store = function | Store _ -> true | _ -> false let transpose dag = let _ = Util.info "begin transpose" in let (all_nodes, parent_table) = visit [] Assoctable.empty Assoctable.empty dag in let transposerM = make_transposer parent_table in let mapTransposerM = mapM transposerM in let duals = runM Assoctable.empty mapTransposerM all_nodes in let roots = List.filter is_store duals in let _ = Util.info "end transpose" in roots end (************************************************************* * Various dag statistics *************************************************************) module Stats : sig type complexity val complexity : Expr.expr list -> complexity val same_complexity : complexity -> complexity -> bool val leq_complexity : complexity -> complexity -> bool val to_string : complexity -> string end = struct type complexity = int * int * int * int * int * int let rec visit visited vtable = function [] -> visited | node :: rest -> match node_lookup node vtable with Some _ -> visit visited vtable rest | None -> let children = match node with Store (v, n) -> [n] | Plus l -> l | Times (a, b) -> [a; b] | Uminus x -> [x] | _ -> [] in visit (node :: visited) (node_insert node () vtable) (children @ rest) let complexity dag = let rec loop (load, store, plus, times, uminus, num) = function [] -> (load, store, plus, times, uminus, num) | node :: rest -> loop (match node with | Load _ -> (load + 1, store, plus, times, uminus, num) | Store _ -> (load, store + 1, plus, times, uminus, num) | Plus x -> (load, store, plus + (List.length x - 1), times, uminus, num) | Times _ -> (load, store, plus, times + 1, uminus, num) | Uminus _ -> (load, store, plus, times, uminus + 1, num) | Num _ -> (load, store, plus, times, uminus, num + 1) | CTimes _ -> (load, store, plus, times, uminus, num) | CTimesJ _ -> (load, store, plus, times, uminus, num) | NaN _ -> (load, store, plus, times, uminus, num)) rest in let (l, s, p, t, u, n) = loop (0, 0, 0, 0, 0, 0) (visit [] Assoctable.empty dag) in (l, s, p, t, u, n) let weight (l, s, p, t, u, n) = l + s + 10 * p + 20 * t + u + n let same_complexity a b = weight a = weight b let leq_complexity a b = weight a <= weight b let to_string (l, s, p, t, u, n) = Printf.sprintf "ld=%d st=%d add=%d mul=%d uminus=%d num=%d\n" l s p t u n end (* simplify the dag *) let algsimp v = let rec simplification_loop v = let () = Util.info "simplification step" in let complexity = Stats.complexity v in let () = Util.info ("complexity = " ^ (Stats.to_string complexity)) in let v = (AlgSimp.algsimp @@ Transpose.transpose @@ AlgSimp.algsimp @@ Transpose.transpose) v in let complexity' = Stats.complexity v in let () = Util.info ("complexity = " ^ (Stats.to_string complexity')) in if (Stats.leq_complexity complexity' complexity) then let () = Util.info "end algsimp" in v else simplification_loop v in let () = Util.info "begin algsimp" in let v = AlgSimp.algsimp v in if !Magic.network_transposition then simplification_loop v else v