view Lib/fftw-3.2.1/dft/direct.c @ 1:e86e9c111b29

Updates stuff that potentially fixes the memory leak and also makes it work on Windows and Linux (Need to test). Still have to fix fftw include for linux in Jucer.
author David Ronan <d.m.ronan@qmul.ac.uk>
date Thu, 09 Jul 2015 15:01:32 +0100
parents 25bf17994ef1
children
line wrap: on
line source
/*
 * Copyright (c) 2003, 2007-8 Matteo Frigo
 * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */


/* direct DFT solver, if we have a codelet */

#include "dft.h"

typedef struct {
     solver super;
     const kdft_desc *desc;
     kdft k;
     int bufferedp;
} S;

typedef struct {
     plan_dft super;

     stride is, os, bufstride;
     INT n, vl, ivs, ovs;
     kdft k;
     const S *slv;
} P;

static void dobatch(const P *ego, R *ri, R *ii, R *ro, R *io, 
		    R *buf, INT batchsz)
{
     X(cpy2d_pair_ci)(ri, ii, buf, buf+1,
		      ego->n, WS(ego->is, 1), WS(ego->bufstride, 1),
		      batchsz, ego->ivs, 2);
     
     if (IABS(WS(ego->os, 1)) < IABS(ego->ovs)) {
	  /* transform directly to output */
	  ego->k(buf, buf+1, ro, io, 
		 ego->bufstride, ego->os, batchsz, 2, ego->ovs);
     } else {
	  /* transform to buffer and copy back */
	  ego->k(buf, buf+1, buf, buf+1, 
		 ego->bufstride, ego->bufstride, batchsz, 2, 2);
	  X(cpy2d_pair_co)(buf, buf+1, ro, io,
			   ego->n, WS(ego->bufstride, 1), WS(ego->os, 1), 
			   batchsz, 2, ego->ovs);
     }
}

static INT compute_batchsize(INT n)
{
     /* round up to multiple of 4 */
     n += 3;
     n &= -4;

     return (n + 2);
}

static void apply_buf(const plan *ego_, R *ri, R *ii, R *ro, R *io)
{
     const P *ego = (const P *) ego_;
     R *buf;
     INT vl = ego->vl, n = ego->n, batchsz = compute_batchsize(n);
     INT i;

     STACK_MALLOC(R *, buf, n * batchsz * 2 * sizeof(R));

     for (i = 0; i < vl - batchsz; i += batchsz) {
	  dobatch(ego, ri, ii, ro, io, buf, batchsz);
	  ri += batchsz * ego->ivs; ii += batchsz * ego->ivs;
	  ro += batchsz * ego->ovs; io += batchsz * ego->ovs;
     }
     dobatch(ego, ri, ii, ro, io, buf, vl - i);

     STACK_FREE(buf);
}

static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io)
{
     const P *ego = (const P *) ego_;
     ASSERT_ALIGNED_DOUBLE;
     ego->k(ri, ii, ro, io, ego->is, ego->os, ego->vl, ego->ivs, ego->ovs);
}

static void apply_extra_iter(const plan *ego_, R *ri, R *ii, R *ro, R *io)
{
     const P *ego = (const P *) ego_;
     INT vl = ego->vl;

     ASSERT_ALIGNED_DOUBLE;

     /* for 4-way SIMD when VL is odd: iterate over an
	even vector length VL, and then execute the last
	iteration as a 2-vector with vector stride 0. */
     ego->k(ri, ii, ro, io, ego->is, ego->os, vl - 1, ego->ivs, ego->ovs);

     ego->k(ri + (vl - 1) * ego->ivs, ii + (vl - 1) * ego->ivs,
	    ro + (vl - 1) * ego->ovs, io + (vl - 1) * ego->ovs,
	    ego->is, ego->os, 1, 0, 0);
}

static void destroy(plan *ego_)
{
     P *ego = (P *) ego_;
     X(stride_destroy)(ego->is);
     X(stride_destroy)(ego->os);
     X(stride_destroy)(ego->bufstride);
}

static void print(const plan *ego_, printer *p)
{
     const P *ego = (const P *) ego_;
     const S *s = ego->slv;
     const kdft_desc *d = s->desc;

     if (ego->slv->bufferedp)
	  p->print(p, "(dft-directbuf/%D-%D%v \"%s\")", 
		   compute_batchsize(d->sz), d->sz, ego->vl, d->nam);
     else
	  p->print(p, "(dft-direct-%D%v \"%s\")", d->sz, ego->vl, d->nam);
}

static int applicable_buf(const solver *ego_, const problem *p_,
			  const planner *plnr)
{
     const S *ego = (const S *) ego_;
     const problem_dft *p = (const problem_dft *) p_;
     const kdft_desc *d = ego->desc;
     INT vl;
     INT ivs, ovs;
     INT batchsz;

     return (
	  1
	  && p->sz->rnk == 1
	  && p->vecsz->rnk == 1
	  && p->sz->dims[0].n == d->sz

	  /* check strides etc */
	  && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs)

	  /* UGLY if IS <= IVS */
	  && !(NO_UGLYP(plnr) &&
	       X(iabs)(p->sz->dims[0].is) <= X(iabs)(ivs))

	  && (batchsz = compute_batchsize(d->sz), 1)
	  && (d->genus->okp(d, 0, ((const R *)0) + 1, p->ro, p->io,
			    2 * batchsz, p->sz->dims[0].os,
			    batchsz, 2, ovs, plnr))
	  && (d->genus->okp(d, 0, ((const R *)0) + 1, p->ro, p->io,
			    2 * batchsz, p->sz->dims[0].os,
			    vl % batchsz, 2, ovs, plnr))


	  && (0
	      /* can operate out-of-place */
	      || p->ri != p->ro

	      /* can operate in-place as long as strides are the same */
	      || X(tensor_inplace_strides2)(p->sz, p->vecsz)

	      /* can do it if the problem fits in the buffer, no matter
		 what the strides are */
	      || vl <= batchsz
	       )
	  );
}

static int applicable(const solver *ego_, const problem *p_,
		      const planner *plnr, int *extra_iterp)
{
     const S *ego = (const S *) ego_;
     const problem_dft *p = (const problem_dft *) p_;
     const kdft_desc *d = ego->desc;
     INT vl;
     INT ivs, ovs;

     return (
	  1
	  && p->sz->rnk == 1
	  && p->vecsz->rnk <= 1
	  && p->sz->dims[0].n == d->sz

	  /* check strides etc */
	  && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs)

	  && ((*extra_iterp = 0,
	       (d->genus->okp(d, p->ri, p->ii, p->ro, p->io,
			      p->sz->dims[0].is, p->sz->dims[0].os,
			      vl, ivs, ovs, plnr)))
	      ||
	      (*extra_iterp = 1,
	       ((d->genus->okp(d, p->ri, p->ii, p->ro, p->io,
			       p->sz->dims[0].is, p->sz->dims[0].os,
			       vl - 1, ivs, ovs, plnr))
		&&
		(d->genus->okp(d, p->ri, p->ii, p->ro, p->io,
			       p->sz->dims[0].is, p->sz->dims[0].os,
			       2, 0, 0, plnr)))))

	  && (0
	      /* can operate out-of-place */
	      || p->ri != p->ro

	      /* can always compute one transform */
	      || vl == 1

	      /* can operate in-place as long as strides are the same */
	      || X(tensor_inplace_strides2)(p->sz, p->vecsz)
	       )
	  );
}


static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
{
     const S *ego = (const S *) ego_;
     P *pln;
     const problem_dft *p;
     iodim *d;
     const kdft_desc *e = ego->desc;

     static const plan_adt padt = {
	  X(dft_solve), X(null_awake), print, destroy
     };

     UNUSED(plnr);

     if (ego->bufferedp) {
	  if (!applicable_buf(ego_, p_, plnr))
	       return (plan *)0;
	  pln = MKPLAN_DFT(P, &padt, apply_buf);
     } else {
	  int extra_iterp = 0;
	  if (!applicable(ego_, p_, plnr, &extra_iterp))
	       return (plan *)0;
	  pln = MKPLAN_DFT(P, &padt, extra_iterp ? apply_extra_iter : apply);
     }

     p = (const problem_dft *) p_;
     d = p->sz->dims;
     pln->k = ego->k;
     pln->n = d[0].n;
     pln->is = X(mkstride)(pln->n, d[0].is);
     pln->os = X(mkstride)(pln->n, d[0].os);
     pln->bufstride = X(mkstride)(pln->n, 2 * compute_batchsize(pln->n));

     X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
     pln->slv = ego;

     X(ops_zero)(&pln->super.super.ops);
     X(ops_madd2)(pln->vl / e->genus->vl, &e->ops, &pln->super.super.ops);

     if (ego->bufferedp) 
	  pln->super.super.ops.other += 4 * pln->n * pln->vl;

     pln->super.super.could_prune_now_p = !ego->bufferedp;
     return &(pln->super.super);
}

static solver *mksolver(kdft k, const kdft_desc *desc, int bufferedp)
{
     static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
     S *slv = MKSOLVER(S, &sadt);
     slv->k = k;
     slv->desc = desc;
     slv->bufferedp = bufferedp;
     return &(slv->super);
}

solver *X(mksolver_dft_direct)(kdft k, const kdft_desc *desc)
{
     return mksolver(k, desc, 0);
}

solver *X(mksolver_dft_directbuf)(kdft k, const kdft_desc *desc)
{
     return mksolver(k, desc, 1);
}