view Lib/fftw-3.2.1/rdft/scalar/r2cf/hc2cfdft_20.c @ 2:c649e493c30a

Removed a redundant cout<<
author Geogaddi\David <d.m.ronan@qmul.ac.uk>
date Thu, 09 Jul 2015 21:45:55 +0100
parents 25bf17994ef1
children
line wrap: on
line source
/*
 * Copyright (c) 2003, 2007-8 Matteo Frigo
 * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Mon Feb  9 19:54:49 EST 2009 */

#include "codelet-rdft.h"

#ifdef HAVE_FMA

/* Generated by: ../../../genfft/gen_hc2cdft -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 20 -dit -name hc2cfdft_20 -include hc2cf.h */

/*
 * This function contains 286 FP additions, 188 FP multiplications,
 * (or, 176 additions, 78 multiplications, 110 fused multiply/add),
 * 174 stack variables, 5 constants, and 80 memory accesses
 */
#include "hc2cf.h"

static void hc2cfdft_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
     DK(KP618033988, +0.618033988749894848204586834365638117720309180);
     INT m;
     for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 38, MAKE_VOLATILE_STRIDE(rs)) {
	  E T4X, T5i, T5k, T5e, T5c, T5d, T5j, T5f;
	  {
	       E T2E, T4W, T3v, T4k, T2M, T3w, T4V, T4j, T2p, T2T, T5a, T5A, T3D, T3o, T4b;
	       E T4B, T1Y, T2S, T5z, T57, T3h, T3C, T4A, T44, TH, T2P, T50, T5x, T3z, T32;
	       E T3P, T4D, T3V, T3U, T5w, T53, T2Q, T1o, T3A, T39;
	       {
		    E T1V, T9, T2w, Tu, T1, T6, T1R, T1U, T1T, T2Y, T5, T40, T2F, T10, T2C;
		    E TE, TX, T2m, T1y, T4g, TS, T33, TW, Tw, TB, T2y, T2B, TA, T3L, T2A;
		    E T3t, T1q, T1v, T2i, T2l, T2k, T3d, T1u, T48, Tm, Tr, T2s, T2v, T2u, T3J;
		    E Tq, T3r, T20, T1g, T23, T1l, T1h, T3S, T3k, T21, T2H, TL, T2K, TQ, TM;
		    E T35, T4h, T2I, T2f, T2g, T1I, T1D, T2c, T46, T2e, T3b, T1E, T28, T16, T29;
		    E T1b, T25, T3i, T27, T3Q, T17, T1O, T1P, Tj, T1M, Te, T1L, Tb, T3Y, TV;
		    E T1d, T1Z;
		    {
			 E T1S, T4, T7, T8;
			 T7 = Rp[WS(rs, 9)];
			 T8 = Rm[WS(rs, 9)];
			 {
			      E Ts, Tt, T2, T3;
			      Ts = Rp[WS(rs, 2)];
			      Tt = Rm[WS(rs, 2)];
			      T2 = Ip[WS(rs, 9)];
			      T1V = T7 + T8;
			      T9 = T7 - T8;
			      T2w = Ts - Tt;
			      Tu = Ts + Tt;
			      T3 = Im[WS(rs, 9)];
			      T1 = W[36];
			      T6 = W[37];
			      T1R = W[34];
			      T1S = T2 - T3;
			      T4 = T2 + T3;
			      T1U = W[35];
			 }
			 {
			      E TY, TZ, TC, TD;
			      TY = Ip[0];
			      T1T = T1R * T1S;
			      T2Y = T6 * T4;
			      T5 = T1 * T4;
			      T40 = T1U * T1S;
			      TZ = Im[0];
			      TC = Rp[WS(rs, 7)];
			      TD = Rm[WS(rs, 7)];
			      {
				   E T1w, T1x, TT, TU;
				   T1w = Rp[WS(rs, 1)];
				   T2F = TY - TZ;
				   T10 = TY + TZ;
				   T2C = TC - TD;
				   TE = TC + TD;
				   T1x = Rm[WS(rs, 1)];
				   TT = Rm[0];
				   TU = Rp[0];
				   TX = W[0];
				   T2m = T1w + T1x;
				   T1y = T1w - T1x;
				   T4g = TU + TT;
				   TV = TT - TU;
				   TS = W[1];
			      }
			 }
		    }
		    {
			 E T2j, T1t, T1r, T1s;
			 {
			      E Tx, Ty, T2z, Tz;
			      Tx = Ip[WS(rs, 7)];
			      Ty = Im[WS(rs, 7)];
			      T33 = TX * TV;
			      TW = TS * TV;
			      Tw = W[26];
			      T2z = Tx + Ty;
			      Tz = Tx - Ty;
			      TB = W[27];
			      T2y = W[28];
			      T2B = W[29];
			      TA = Tw * Tz;
			      T3L = TB * Tz;
			      T2A = T2y * T2z;
			      T3t = T2B * T2z;
			 }
			 T1r = Ip[WS(rs, 1)];
			 T1s = Im[WS(rs, 1)];
			 T1q = W[4];
			 T1v = W[5];
			 T2i = W[2];
			 T2j = T1r - T1s;
			 T1t = T1r + T1s;
			 T2l = W[3];
			 {
			      E T2t, Tp, Tn, To;
			      Tn = Ip[WS(rs, 2)];
			      T2k = T2i * T2j;
			      T3d = T1v * T1t;
			      T1u = T1q * T1t;
			      T48 = T2l * T2j;
			      To = Im[WS(rs, 2)];
			      Tm = W[6];
			      Tr = W[7];
			      T2s = W[8];
			      T2t = Tn + To;
			      Tp = Tn - To;
			      T2v = W[9];
			      {
				   E T1e, T1f, T1j, T1k;
				   T1e = Ip[WS(rs, 3)];
				   T2u = T2s * T2t;
				   T3J = Tr * Tp;
				   Tq = Tm * Tp;
				   T3r = T2v * T2t;
				   T1f = Im[WS(rs, 3)];
				   T1j = Rp[WS(rs, 3)];
				   T1k = Rm[WS(rs, 3)];
				   T1d = W[10];
				   T20 = T1e + T1f;
				   T1g = T1e - T1f;
				   T23 = T1j - T1k;
				   T1l = T1j + T1k;
				   T1Z = W[12];
				   T1h = T1d * T1g;
			      }
			 }
		    }
		    {
			 E T2d, T1A, TI, T2G, T26, T13;
			 {
			      E TJ, TK, TO, TP;
			      TJ = Ip[WS(rs, 5)];
			      T3S = T1d * T1l;
			      T3k = T1Z * T23;
			      T21 = T1Z * T20;
			      TK = Im[WS(rs, 5)];
			      TO = Rp[WS(rs, 5)];
			      TP = Rm[WS(rs, 5)];
			      TI = W[20];
			      T2H = TJ - TK;
			      TL = TJ + TK;
			      T2K = TO + TP;
			      TQ = TO - TP;
			      T2G = W[18];
			      TM = TI * TL;
			 }
			 {
			      E T1G, T1H, T1B, T1C;
			      T1G = Rm[WS(rs, 6)];
			      T35 = TI * TQ;
			      T4h = T2G * T2K;
			      T2I = T2G * T2H;
			      T1H = Rp[WS(rs, 6)];
			      T1B = Ip[WS(rs, 6)];
			      T1C = Im[WS(rs, 6)];
			      T2f = W[23];
			      T2g = T1H + T1G;
			      T1I = T1G - T1H;
			      T2d = T1B - T1C;
			      T1D = T1B + T1C;
			      T2c = W[22];
			      T1A = W[24];
			      T46 = T2f * T2d;
			 }
			 {
			      E T14, T15, T19, T1a;
			      T14 = Ip[WS(rs, 8)];
			      T2e = T2c * T2d;
			      T3b = T1A * T1I;
			      T1E = T1A * T1D;
			      T15 = Im[WS(rs, 8)];
			      T19 = Rp[WS(rs, 8)];
			      T1a = Rm[WS(rs, 8)];
			      T28 = W[32];
			      T16 = T14 - T15;
			      T29 = T14 + T15;
			      T1b = T19 + T1a;
			      T26 = T1a - T19;
			      T25 = W[33];
			      T13 = W[30];
			      T3i = T28 * T26;
			 }
			 {
			      E Th, Ti, Tc, Td;
			      Th = Rm[WS(rs, 4)];
			      T27 = T25 * T26;
			      T3Q = T13 * T1b;
			      T17 = T13 * T16;
			      Ti = Rp[WS(rs, 4)];
			      Tc = Ip[WS(rs, 4)];
			      Td = Im[WS(rs, 4)];
			      T1O = W[15];
			      T1P = Ti + Th;
			      Tj = Th - Ti;
			      T1M = Tc - Td;
			      Te = Tc + Td;
			      T1L = W[14];
			      Tb = W[16];
			      T3Y = T1O * T1M;
			 }
		    }
		    {
			 E T1N, T2W, Tf, T2L, T4i;
			 {
			      E T2x, T2D, T3s, T3u, T2J;
			      T2x = FNMS(T2v, T2w, T2u);
			      T1N = T1L * T1M;
			      T2W = Tb * Tj;
			      Tf = Tb * Te;
			      T2D = FNMS(T2B, T2C, T2A);
			      T3s = FMA(T2s, T2w, T3r);
			      T3u = FMA(T2y, T2C, T3t);
			      T2J = W[19];
			      T2E = T2x - T2D;
			      T4W = T2x + T2D;
			      T3v = T3s + T3u;
			      T4k = T3u - T3s;
			      T2L = FNMS(T2J, T2K, T2I);
			      T4i = FMA(T2J, T2H, T4h);
			 }
			 {
			      E T42, T43, T45, T4a, T3O, T3N;
			      {
				   E T2a, T3j, T47, T3l, T24, T2o, T3n, T49, T22, T2h, T2n;
				   T2a = FMA(T28, T29, T27);
				   T3j = FNMS(T25, T29, T3i);
				   T2M = T2F - T2L;
				   T3w = T2L + T2F;
				   T4V = T4g + T4i;
				   T4j = T4g - T4i;
				   T22 = W[13];
				   T2h = FNMS(T2f, T2g, T2e);
				   T2n = FNMS(T2l, T2m, T2k);
				   T47 = FMA(T2c, T2g, T46);
				   T3l = FMA(T22, T20, T3k);
				   T24 = FNMS(T22, T23, T21);
				   T2o = T2h - T2n;
				   T3n = T2h + T2n;
				   T49 = FMA(T2i, T2m, T48);
				   {
					E T2b, T58, T3m, T59;
					T2b = T24 - T2a;
					T58 = T2a + T24;
					T3m = T3j - T3l;
					T45 = T3j + T3l;
					T4a = T47 - T49;
					T59 = T47 + T49;
					T2p = T2b - T2o;
					T2T = T2b + T2o;
					T5a = T58 + T59;
					T5A = T59 - T58;
					T3D = T3m + T3n;
					T3o = T3m - T3n;
				   }
			      }
			      {
				   E T1z, T3e, T1Q, T3c, T1J, T1W, T3Z, T41, T1F;
				   T1z = FNMS(T1v, T1y, T1u);
				   T3e = FMA(T1q, T1y, T3d);
				   T1F = W[25];
				   T4b = T45 + T4a;
				   T4B = T4a - T45;
				   T1Q = FNMS(T1O, T1P, T1N);
				   T3c = FNMS(T1F, T1D, T3b);
				   T1J = FMA(T1F, T1I, T1E);
				   T1W = FNMS(T1U, T1V, T1T);
				   T3Z = FMA(T1L, T1P, T3Y);
				   T41 = FMA(T1R, T1V, T40);
				   {
					E T56, T3g, T55, T1K, T1X, T3f;
					T56 = T1J + T1z;
					T1K = T1z - T1J;
					T3g = T1Q + T1W;
					T1X = T1Q - T1W;
					T55 = T3Z + T41;
					T42 = T3Z - T41;
					T1Y = T1K - T1X;
					T2S = T1X + T1K;
					T43 = T3c + T3e;
					T3f = T3c - T3e;
					T5z = T55 - T56;
					T57 = T55 + T56;
					T3h = T3f - T3g;
					T3C = T3g + T3f;
				   }
			      }
			      {
				   E Ta, T2Z, T3K, T2X, Tk, TG, T31, T3M, Tg, Tv, TF;
				   Ta = FNMS(T6, T9, T5);
				   T4A = T42 - T43;
				   T44 = T42 + T43;
				   T2Z = FMA(T1, T9, T2Y);
				   Tg = W[17];
				   Tv = FNMS(Tr, Tu, Tq);
				   TF = FNMS(TB, TE, TA);
				   T3K = FMA(Tm, Tu, T3J);
				   T2X = FNMS(Tg, Te, T2W);
				   Tk = FMA(Tg, Tj, Tf);
				   TG = Tv - TF;
				   T31 = Tv + TF;
				   T3M = FMA(Tw, TE, T3L);
				   {
					E Tl, T4Z, T30, T4Y;
					Tl = Ta - Tk;
					T4Z = Tk + Ta;
					T30 = T2X - T2Z;
					T3O = T2X + T2Z;
					T3N = T3K - T3M;
					T4Y = T3K + T3M;
					TH = Tl - TG;
					T2P = TG + Tl;
					T50 = T4Y + T4Z;
					T5x = T4Y - T4Z;
					T3z = T31 + T30;
					T32 = T30 - T31;
				   }
			      }
			      {
				   E T11, T34, T36, TR, T1i, T3R, T1c, TN, T18;
				   T11 = FMA(TX, T10, TW);
				   T34 = FNMS(TS, T10, T33);
				   TN = W[21];
				   T3P = T3N + T3O;
				   T4D = T3N - T3O;
				   T18 = W[31];
				   T36 = FMA(TN, TL, T35);
				   TR = FNMS(TN, TQ, TM);
				   T1i = W[11];
				   T3R = FMA(T18, T16, T3Q);
				   T1c = FNMS(T18, T1b, T17);
				   {
					E T52, T12, T3T, T1m;
					T52 = TR + T11;
					T12 = TR - T11;
					T3T = FMA(T1i, T1g, T3S);
					T1m = FNMS(T1i, T1l, T1h);
					{
					     E T37, T51, T38, T1n;
					     T3V = T36 + T34;
					     T37 = T34 - T36;
					     T51 = T3R + T3T;
					     T3U = T3R - T3T;
					     T38 = T1c + T1m;
					     T1n = T1c - T1m;
					     T5w = T51 - T52;
					     T53 = T51 + T52;
					     T2Q = T1n + T12;
					     T1o = T12 - T1n;
					     T3A = T38 + T37;
					     T39 = T37 - T38;
					}
				   }
			      }
			 }
		    }
	       }
	       {
		    E T4l, T4m, T4n, T4w, T4u;
		    {
			 E T4L, T2O, T3W, T4K, T4I, T4G, T4S, T4U, T4J, T4z, T4H;
			 {
			      E T4C, T2N, T4R, T1p, T4E, T2q, T4Q;
			      T4L = T4A + T4B;
			      T4C = T4A - T4B;
			      T2N = T2E + T2M;
			      T2O = T2M - T2E;
			      T4R = T1o - TH;
			      T1p = TH + T1o;
			      T4E = T3U - T3V;
			      T3W = T3U + T3V;
			      T2q = T1Y + T2p;
			      T4Q = T2p - T1Y;
			      {
				   E T4y, T4x, T4F, T2r;
				   T4F = T4D - T4E;
				   T4K = T4D + T4E;
				   T4y = T1p - T2q;
				   T2r = T1p + T2q;
				   T4I = FMA(KP618033988, T4C, T4F);
				   T4G = FNMS(KP618033988, T4F, T4C);
				   T4S = FNMS(KP618033988, T4R, T4Q);
				   T4U = FMA(KP618033988, T4Q, T4R);
				   Im[WS(rs, 4)] = KP500000000 * (T2r - T2N);
				   T4x = FMA(KP250000000, T2r, T2N);
				   T4J = T4j - T4k;
				   T4l = T4j + T4k;
				   T4z = FMA(KP559016994, T4y, T4x);
				   T4H = FNMS(KP559016994, T4y, T4x);
			      }
			 }
			 {
			      E T2R, T4s, T4d, T4f, T4t, T2U, T4P, T4T;
			      {
				   E T3X, T4O, T4M, T4c, T4N;
				   T4m = T3P + T3W;
				   T3X = T3P - T3W;
				   Ip[WS(rs, 7)] = KP500000000 * (FMA(KP951056516, T4G, T4z));
				   Ip[WS(rs, 3)] = KP500000000 * (FNMS(KP951056516, T4G, T4z));
				   Im[WS(rs, 8)] = -(KP500000000 * (FNMS(KP951056516, T4I, T4H)));
				   Im[0] = -(KP500000000 * (FMA(KP951056516, T4I, T4H)));
				   T4O = T4K - T4L;
				   T4M = T4K + T4L;
				   T4c = T44 - T4b;
				   T4n = T44 + T4b;
				   T2R = T2P + T2Q;
				   T4s = T2P - T2Q;
				   Rm[WS(rs, 4)] = KP500000000 * (T4J + T4M);
				   T4N = FNMS(KP250000000, T4M, T4J);
				   T4d = FMA(KP618033988, T4c, T3X);
				   T4f = FNMS(KP618033988, T3X, T4c);
				   T4t = T2S - T2T;
				   T2U = T2S + T2T;
				   T4P = FNMS(KP559016994, T4O, T4N);
				   T4T = FMA(KP559016994, T4O, T4N);
			      }
			      {
				   E T3H, T3G, T2V, T3I, T4e;
				   T2V = T2R + T2U;
				   T3H = T2R - T2U;
				   Rp[WS(rs, 7)] = KP500000000 * (FNMS(KP951056516, T4S, T4P));
				   Rp[WS(rs, 3)] = KP500000000 * (FMA(KP951056516, T4S, T4P));
				   Rm[0] = KP500000000 * (FNMS(KP951056516, T4U, T4T));
				   Rm[WS(rs, 8)] = KP500000000 * (FMA(KP951056516, T4U, T4T));
				   Ip[WS(rs, 5)] = KP500000000 * (T2O + T2V);
				   T3G = FNMS(KP250000000, T2V, T2O);
				   T3I = FMA(KP559016994, T3H, T3G);
				   T4e = FNMS(KP559016994, T3H, T3G);
				   T4w = FNMS(KP618033988, T4s, T4t);
				   T4u = FMA(KP618033988, T4t, T4s);
				   Ip[WS(rs, 9)] = KP500000000 * (FMA(KP951056516, T4d, T3I));
				   Ip[WS(rs, 1)] = KP500000000 * (FNMS(KP951056516, T4d, T3I));
				   Im[WS(rs, 6)] = -(KP500000000 * (FNMS(KP951056516, T4f, T4e)));
				   Im[WS(rs, 2)] = -(KP500000000 * (FMA(KP951056516, T4f, T4e)));
			      }
			 }
		    }
		    {
			 E T3y, T5O, T5Q, T5F, T5K, T5I;
			 {
			      E T5G, T5H, T3x, T4q, T5E, T5C, T3a, T5N, T4p, T5M, T3p, T5y, T5B, T4o;
			      T5G = T5x + T5w;
			      T5y = T5w - T5x;
			      T5B = T5z - T5A;
			      T5H = T5z + T5A;
			      T3y = T3w - T3v;
			      T3x = T3v + T3w;
			      T4q = T4m - T4n;
			      T4o = T4m + T4n;
			      T5E = FMA(KP618033988, T5y, T5B);
			      T5C = FNMS(KP618033988, T5B, T5y);
			      T3a = T32 + T39;
			      T5N = T39 - T32;
			      Rp[WS(rs, 5)] = KP500000000 * (T4l + T4o);
			      T4p = FNMS(KP250000000, T4o, T4l);
			      T5M = T3o - T3h;
			      T3p = T3h + T3o;
			      {
				   E T5u, T5t, T4r, T4v, T3q, T5D, T5v;
				   T4r = FMA(KP559016994, T4q, T4p);
				   T4v = FNMS(KP559016994, T4q, T4p);
				   T5u = T3p - T3a;
				   T3q = T3a + T3p;
				   Rp[WS(rs, 9)] = KP500000000 * (FNMS(KP951056516, T4u, T4r));
				   Rp[WS(rs, 1)] = KP500000000 * (FMA(KP951056516, T4u, T4r));
				   Rm[WS(rs, 2)] = KP500000000 * (FNMS(KP951056516, T4w, T4v));
				   Rm[WS(rs, 6)] = KP500000000 * (FMA(KP951056516, T4w, T4v));
				   Im[WS(rs, 9)] = KP500000000 * (T3q - T3x);
				   T5t = FMA(KP250000000, T3q, T3x);
				   T5O = FNMS(KP618033988, T5N, T5M);
				   T5Q = FMA(KP618033988, T5M, T5N);
				   T5F = T4V - T4W;
				   T4X = T4V + T4W;
				   T5D = FNMS(KP559016994, T5u, T5t);
				   T5v = FMA(KP559016994, T5u, T5t);
				   Im[WS(rs, 5)] = -(KP500000000 * (FNMS(KP951056516, T5C, T5v)));
				   Ip[WS(rs, 6)] = KP500000000 * (FMA(KP951056516, T5C, T5v));
				   Im[WS(rs, 1)] = -(KP500000000 * (FNMS(KP951056516, T5E, T5D)));
				   Ip[WS(rs, 2)] = KP500000000 * (FMA(KP951056516, T5E, T5D));
				   T5K = T5G - T5H;
				   T5I = T5G + T5H;
			      }
			 }
			 {
			      E T54, T5b, T5s, T5q, T5g, T5h, T3F, T5m, T5o, T5p, T5J, T5l, T5r, T5n;
			      T54 = T50 + T53;
			      T5o = T50 - T53;
			      T5p = T5a - T57;
			      T5b = T57 + T5a;
			      Rm[WS(rs, 9)] = KP500000000 * (T5F + T5I);
			      T5J = FNMS(KP250000000, T5I, T5F);
			      T5s = FMA(KP618033988, T5o, T5p);
			      T5q = FNMS(KP618033988, T5p, T5o);
			      {
				   E T5L, T5P, T3B, T3E;
				   T5L = FNMS(KP559016994, T5K, T5J);
				   T5P = FMA(KP559016994, T5K, T5J);
				   T3B = T3z + T3A;
				   T5g = T3z - T3A;
				   T5h = T3C - T3D;
				   T3E = T3C + T3D;
				   Rm[WS(rs, 1)] = KP500000000 * (FMA(KP951056516, T5O, T5L));
				   Rp[WS(rs, 2)] = KP500000000 * (FNMS(KP951056516, T5O, T5L));
				   Rm[WS(rs, 5)] = KP500000000 * (FNMS(KP951056516, T5Q, T5P));
				   Rp[WS(rs, 6)] = KP500000000 * (FMA(KP951056516, T5Q, T5P));
				   T3F = T3B + T3E;
				   T5m = T3B - T3E;
			      }
			      Ip[0] = KP500000000 * (T3y + T3F);
			      T5l = FNMS(KP250000000, T3F, T3y);
			      T5i = FMA(KP618033988, T5h, T5g);
			      T5k = FNMS(KP618033988, T5g, T5h);
			      T5r = FNMS(KP559016994, T5m, T5l);
			      T5n = FMA(KP559016994, T5m, T5l);
			      Im[WS(rs, 3)] = -(KP500000000 * (FNMS(KP951056516, T5q, T5n)));
			      Ip[WS(rs, 4)] = KP500000000 * (FMA(KP951056516, T5q, T5n));
			      Im[WS(rs, 7)] = -(KP500000000 * (FNMS(KP951056516, T5s, T5r)));
			      Ip[WS(rs, 8)] = KP500000000 * (FMA(KP951056516, T5s, T5r));
			      T5e = T54 - T5b;
			      T5c = T54 + T5b;
			 }
		    }
	       }
	  }
	  Rp[0] = KP500000000 * (T4X + T5c);
	  T5d = FNMS(KP250000000, T5c, T4X);
	  T5j = FNMS(KP559016994, T5e, T5d);
	  T5f = FMA(KP559016994, T5e, T5d);
	  Rm[WS(rs, 3)] = KP500000000 * (FMA(KP951056516, T5i, T5f));
	  Rp[WS(rs, 4)] = KP500000000 * (FNMS(KP951056516, T5i, T5f));
	  Rm[WS(rs, 7)] = KP500000000 * (FNMS(KP951056516, T5k, T5j));
	  Rp[WS(rs, 8)] = KP500000000 * (FMA(KP951056516, T5k, T5j));
     }
}

static const tw_instr twinstr[] = {
     {TW_FULL, 1, 20},
     {TW_NEXT, 1, 0}
};

static const hc2c_desc desc = { 20, "hc2cfdft_20", twinstr, &GENUS, {176, 78, 110, 0} };

void X(codelet_hc2cfdft_20) (planner *p) {
     X(khc2c_register) (p, hc2cfdft_20, &desc, HC2C_VIA_DFT);
}
#else				/* HAVE_FMA */

/* Generated by: ../../../genfft/gen_hc2cdft -compact -variables 4 -pipeline-latency 4 -n 20 -dit -name hc2cfdft_20 -include hc2cf.h */

/*
 * This function contains 286 FP additions, 140 FP multiplications,
 * (or, 224 additions, 78 multiplications, 62 fused multiply/add),
 * 98 stack variables, 5 constants, and 80 memory accesses
 */
#include "hc2cf.h"

static void hc2cfdft_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
     DK(KP125000000, +0.125000000000000000000000000000000000000000000);
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
     DK(KP279508497, +0.279508497187473712051146708591409529430077295);
     DK(KP293892626, +0.293892626146236564584352977319536384298826219);
     DK(KP475528258, +0.475528258147576786058219666689691071702849317);
     INT m;
     for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 38, MAKE_VOLATILE_STRIDE(rs)) {
	  E T12, T2w, T4o, T4V, T2H, T3a, T4y, T4Y, T1z, T2v, T25, T2y, T2s, T2z, T4v;
	  E T4X, T4r, T4U, T3A, T3Z, T2X, T37, T3k, T41, T2M, T39, T3v, T3Y, T2S, T36;
	  E T3p, T42, Td, T4G, T33, T3N, Tw, T4H, T32, T3O;
	  {
	       E T3, T3L, T1x, T2V, Th, Tl, TC, T3g, Tq, Tu, TH, T3h, T7, Tb, T1q;
	       E T2U, TR, T2P, T1F, T3r, T23, T2K, T2f, T3y, T1k, T3m, T2q, T2E, T10, T2Q;
	       E T1K, T3s, T1U, T2J, T2a, T3x, T1b, T3l, T2l, T2D;
	       {
		    E T1, T2, T1s, T1u, T1v, T1w, T1r, T1t;
		    T1 = Ip[0];
		    T2 = Im[0];
		    T1s = T1 + T2;
		    T1u = Rp[0];
		    T1v = Rm[0];
		    T1w = T1u - T1v;
		    T3 = T1 - T2;
		    T3L = T1u + T1v;
		    T1r = W[0];
		    T1t = W[1];
		    T1x = FNMS(T1t, T1w, T1r * T1s);
		    T2V = FMA(T1r, T1w, T1t * T1s);
	       }
	       {
		    E Tf, Tg, Tz, Tj, Tk, TB, Ty, TA;
		    Tf = Ip[WS(rs, 2)];
		    Tg = Im[WS(rs, 2)];
		    Tz = Tf - Tg;
		    Tj = Rp[WS(rs, 2)];
		    Tk = Rm[WS(rs, 2)];
		    TB = Tj + Tk;
		    Th = Tf + Tg;
		    Tl = Tj - Tk;
		    Ty = W[6];
		    TA = W[7];
		    TC = FNMS(TA, TB, Ty * Tz);
		    T3g = FMA(TA, Tz, Ty * TB);
	       }
	       {
		    E To, Tp, TE, Ts, Tt, TG, TD, TF;
		    To = Ip[WS(rs, 7)];
		    Tp = Im[WS(rs, 7)];
		    TE = To - Tp;
		    Ts = Rp[WS(rs, 7)];
		    Tt = Rm[WS(rs, 7)];
		    TG = Ts + Tt;
		    Tq = To + Tp;
		    Tu = Ts - Tt;
		    TD = W[26];
		    TF = W[27];
		    TH = FNMS(TF, TG, TD * TE);
		    T3h = FMA(TF, TE, TD * TG);
	       }
	       {
		    E T5, T6, T1n, T9, Ta, T1p, T1m, T1o;
		    T5 = Ip[WS(rs, 5)];
		    T6 = Im[WS(rs, 5)];
		    T1n = T5 + T6;
		    T9 = Rp[WS(rs, 5)];
		    Ta = Rm[WS(rs, 5)];
		    T1p = T9 - Ta;
		    T7 = T5 - T6;
		    Tb = T9 + Ta;
		    T1m = W[20];
		    T1o = W[21];
		    T1q = FNMS(T1o, T1p, T1m * T1n);
		    T2U = FMA(T1m, T1p, T1o * T1n);
	       }
	       {
		    E TM, T1C, TQ, T1E;
		    {
			 E TK, TL, TO, TP;
			 TK = Ip[WS(rs, 4)];
			 TL = Im[WS(rs, 4)];
			 TM = TK + TL;
			 T1C = TK - TL;
			 TO = Rp[WS(rs, 4)];
			 TP = Rm[WS(rs, 4)];
			 TQ = TO - TP;
			 T1E = TO + TP;
		    }
		    {
			 E TJ, TN, T1B, T1D;
			 TJ = W[16];
			 TN = W[17];
			 TR = FNMS(TN, TQ, TJ * TM);
			 T2P = FMA(TN, TM, TJ * TQ);
			 T1B = W[14];
			 T1D = W[15];
			 T1F = FNMS(T1D, T1E, T1B * T1C);
			 T3r = FMA(T1D, T1C, T1B * T1E);
		    }
	       }
	       {
		    E T1Y, T2c, T22, T2e;
		    {
			 E T1W, T1X, T20, T21;
			 T1W = Ip[WS(rs, 1)];
			 T1X = Im[WS(rs, 1)];
			 T1Y = T1W + T1X;
			 T2c = T1W - T1X;
			 T20 = Rp[WS(rs, 1)];
			 T21 = Rm[WS(rs, 1)];
			 T22 = T20 - T21;
			 T2e = T20 + T21;
		    }
		    {
			 E T1V, T1Z, T2b, T2d;
			 T1V = W[4];
			 T1Z = W[5];
			 T23 = FNMS(T1Z, T22, T1V * T1Y);
			 T2K = FMA(T1Z, T1Y, T1V * T22);
			 T2b = W[2];
			 T2d = W[3];
			 T2f = FNMS(T2d, T2e, T2b * T2c);
			 T3y = FMA(T2d, T2c, T2b * T2e);
		    }
	       }
	       {
		    E T1f, T2n, T1j, T2p;
		    {
			 E T1d, T1e, T1h, T1i;
			 T1d = Ip[WS(rs, 3)];
			 T1e = Im[WS(rs, 3)];
			 T1f = T1d - T1e;
			 T2n = T1d + T1e;
			 T1h = Rp[WS(rs, 3)];
			 T1i = Rm[WS(rs, 3)];
			 T1j = T1h + T1i;
			 T2p = T1h - T1i;
		    }
		    {
			 E T1c, T1g, T2m, T2o;
			 T1c = W[10];
			 T1g = W[11];
			 T1k = FNMS(T1g, T1j, T1c * T1f);
			 T3m = FMA(T1c, T1j, T1g * T1f);
			 T2m = W[12];
			 T2o = W[13];
			 T2q = FNMS(T2o, T2p, T2m * T2n);
			 T2E = FMA(T2m, T2p, T2o * T2n);
		    }
	       }
	       {
		    E TV, T1H, TZ, T1J;
		    {
			 E TT, TU, TX, TY;
			 TT = Ip[WS(rs, 9)];
			 TU = Im[WS(rs, 9)];
			 TV = TT + TU;
			 T1H = TT - TU;
			 TX = Rp[WS(rs, 9)];
			 TY = Rm[WS(rs, 9)];
			 TZ = TX - TY;
			 T1J = TX + TY;
		    }
		    {
			 E TS, TW, T1G, T1I;
			 TS = W[36];
			 TW = W[37];
			 T10 = FNMS(TW, TZ, TS * TV);
			 T2Q = FMA(TW, TV, TS * TZ);
			 T1G = W[34];
			 T1I = W[35];
			 T1K = FNMS(T1I, T1J, T1G * T1H);
			 T3s = FMA(T1I, T1H, T1G * T1J);
		    }
	       }
	       {
		    E T1P, T27, T1T, T29;
		    {
			 E T1N, T1O, T1R, T1S;
			 T1N = Ip[WS(rs, 6)];
			 T1O = Im[WS(rs, 6)];
			 T1P = T1N + T1O;
			 T27 = T1N - T1O;
			 T1R = Rp[WS(rs, 6)];
			 T1S = Rm[WS(rs, 6)];
			 T1T = T1R - T1S;
			 T29 = T1R + T1S;
		    }
		    {
			 E T1M, T1Q, T26, T28;
			 T1M = W[24];
			 T1Q = W[25];
			 T1U = FNMS(T1Q, T1T, T1M * T1P);
			 T2J = FMA(T1Q, T1P, T1M * T1T);
			 T26 = W[22];
			 T28 = W[23];
			 T2a = FNMS(T28, T29, T26 * T27);
			 T3x = FMA(T28, T27, T26 * T29);
		    }
	       }
	       {
		    E T16, T2k, T1a, T2i;
		    {
			 E T14, T15, T18, T19;
			 T14 = Ip[WS(rs, 8)];
			 T15 = Im[WS(rs, 8)];
			 T16 = T14 - T15;
			 T2k = T14 + T15;
			 T18 = Rp[WS(rs, 8)];
			 T19 = Rm[WS(rs, 8)];
			 T1a = T18 + T19;
			 T2i = T19 - T18;
		    }
		    {
			 E T13, T17, T2h, T2j;
			 T13 = W[30];
			 T17 = W[31];
			 T1b = FNMS(T17, T1a, T13 * T16);
			 T3l = FMA(T13, T1a, T17 * T16);
			 T2h = W[33];
			 T2j = W[32];
			 T2l = FMA(T2h, T2i, T2j * T2k);
			 T2D = FNMS(T2h, T2k, T2j * T2i);
		    }
	       }
	       {
		    E T2g, T2r, T3n, T3o;
		    {
			 E TI, T11, T4m, T4n;
			 TI = TC - TH;
			 T11 = TR - T10;
			 T12 = TI - T11;
			 T2w = TI + T11;
			 T4m = T3g + T3h;
			 T4n = TR + T10;
			 T4o = T4m + T4n;
			 T4V = T4m - T4n;
		    }
		    {
			 E T2F, T2G, T4w, T4x;
			 T2F = T2D - T2E;
			 T2G = T2a + T2f;
			 T2H = T2F - T2G;
			 T3a = T2F + T2G;
			 T4w = T2l + T2q;
			 T4x = T3x + T3y;
			 T4y = T4w + T4x;
			 T4Y = T4x - T4w;
		    }
		    {
			 E T1l, T1y, T1L, T24;
			 T1l = T1b - T1k;
			 T1y = T1q - T1x;
			 T1z = T1l + T1y;
			 T2v = T1y - T1l;
			 T1L = T1F - T1K;
			 T24 = T1U - T23;
			 T25 = T1L - T24;
			 T2y = T1L + T24;
		    }
		    T2g = T2a - T2f;
		    T2r = T2l - T2q;
		    T2s = T2g - T2r;
		    T2z = T2r + T2g;
		    {
			 E T4t, T4u, T4p, T4q;
			 T4t = T3r + T3s;
			 T4u = T1U + T23;
			 T4v = T4t + T4u;
			 T4X = T4t - T4u;
			 T4p = T3l + T3m;
			 T4q = T1q + T1x;
			 T4r = T4p + T4q;
			 T4U = T4p - T4q;
		    }
		    {
			 E T3w, T3z, T2T, T2W;
			 T3w = T2D + T2E;
			 T3z = T3x - T3y;
			 T3A = T3w + T3z;
			 T3Z = T3z - T3w;
			 T2T = T1b + T1k;
			 T2W = T2U + T2V;
			 T2X = T2T + T2W;
			 T37 = T2T - T2W;
		    }
		    {
			 E T3i, T3j, T2I, T2L;
			 T3i = T3g - T3h;
			 T3j = T2Q - T2P;
			 T3k = T3i + T3j;
			 T41 = T3i - T3j;
			 T2I = T1F + T1K;
			 T2L = T2J + T2K;
			 T2M = T2I + T2L;
			 T39 = T2I - T2L;
		    }
		    {
			 E T3t, T3u, T2O, T2R;
			 T3t = T3r - T3s;
			 T3u = T2K - T2J;
			 T3v = T3t + T3u;
			 T3Y = T3t - T3u;
			 T2O = TC + TH;
			 T2R = T2P + T2Q;
			 T2S = T2O + T2R;
			 T36 = T2O - T2R;
		    }
		    T3n = T3l - T3m;
		    T3o = T2U - T2V;
		    T3p = T3n + T3o;
		    T42 = T3n - T3o;
		    {
			 E Tc, T3M, T4, T8;
			 T4 = W[18];
			 T8 = W[19];
			 Tc = FNMS(T8, Tb, T4 * T7);
			 T3M = FMA(T4, Tb, T8 * T7);
			 Td = T3 - Tc;
			 T4G = T3L + T3M;
			 T33 = Tc + T3;
			 T3N = T3L - T3M;
		    }
		    {
			 E Tm, T30, Tv, T31;
			 {
			      E Te, Ti, Tn, Tr;
			      Te = W[8];
			      Ti = W[9];
			      Tm = FNMS(Ti, Tl, Te * Th);
			      T30 = FMA(Ti, Th, Te * Tl);
			      Tn = W[28];
			      Tr = W[29];
			      Tv = FNMS(Tr, Tu, Tn * Tq);
			      T31 = FMA(Tr, Tq, Tn * Tu);
			 }
			 Tw = Tm - Tv;
			 T4H = Tm + Tv;
			 T32 = T30 + T31;
			 T3O = T31 - T30;
		    }
	       }
	  }
	  {
	       E T3C, T3E, Tx, T2u, T3d, T3e, T3D, T3f;
	       {
		    E T3q, T3B, T1A, T2t;
		    T3q = T3k - T3p;
		    T3B = T3v - T3A;
		    T3C = FMA(KP475528258, T3q, KP293892626 * T3B);
		    T3E = FNMS(KP293892626, T3q, KP475528258 * T3B);
		    Tx = Td - Tw;
		    T1A = T12 + T1z;
		    T2t = T25 + T2s;
		    T2u = T1A + T2t;
		    T3d = KP279508497 * (T1A - T2t);
		    T3e = FNMS(KP125000000, T2u, KP500000000 * Tx);
	       }
	       Ip[WS(rs, 5)] = KP500000000 * (Tx + T2u);
	       T3D = T3d - T3e;
	       Im[WS(rs, 2)] = T3D - T3E;
	       Im[WS(rs, 6)] = T3D + T3E;
	       T3f = T3d + T3e;
	       Ip[WS(rs, 1)] = T3f - T3C;
	       Ip[WS(rs, 9)] = T3f + T3C;
	  }
	  {
	       E T3H, T3T, T3P, T3Q, T3K, T3R, T3U, T3S;
	       {
		    E T3F, T3G, T3I, T3J;
		    T3F = T12 - T1z;
		    T3G = T25 - T2s;
		    T3H = FMA(KP475528258, T3F, KP293892626 * T3G);
		    T3T = FNMS(KP293892626, T3F, KP475528258 * T3G);
		    T3P = T3N + T3O;
		    T3I = T3k + T3p;
		    T3J = T3v + T3A;
		    T3Q = T3I + T3J;
		    T3K = KP279508497 * (T3I - T3J);
		    T3R = FNMS(KP125000000, T3Q, KP500000000 * T3P);
	       }
	       Rp[WS(rs, 5)] = KP500000000 * (T3P + T3Q);
	       T3U = T3R - T3K;
	       Rm[WS(rs, 6)] = T3T + T3U;
	       Rm[WS(rs, 2)] = T3U - T3T;
	       T3S = T3K + T3R;
	       Rp[WS(rs, 1)] = T3H + T3S;
	       Rp[WS(rs, 9)] = T3S - T3H;
	  }
	  {
	       E T44, T46, T2C, T2B, T3V, T3W, T45, T3X;
	       {
		    E T40, T43, T2x, T2A;
		    T40 = T3Y - T3Z;
		    T43 = T41 - T42;
		    T44 = FNMS(KP293892626, T43, KP475528258 * T40);
		    T46 = FMA(KP475528258, T43, KP293892626 * T40);
		    T2C = Tw + Td;
		    T2x = T2v - T2w;
		    T2A = T2y + T2z;
		    T2B = T2x - T2A;
		    T3V = FMA(KP500000000, T2C, KP125000000 * T2B);
		    T3W = KP279508497 * (T2x + T2A);
	       }
	       Im[WS(rs, 4)] = KP500000000 * (T2B - T2C);
	       T45 = T3W - T3V;
	       Im[0] = T45 - T46;
	       Im[WS(rs, 8)] = T45 + T46;
	       T3X = T3V + T3W;
	       Ip[WS(rs, 3)] = T3X - T44;
	       Ip[WS(rs, 7)] = T3X + T44;
	  }
	  {
	       E T49, T4h, T4a, T4d, T4e, T4f, T4i, T4g;
	       {
		    E T47, T48, T4b, T4c;
		    T47 = T2y - T2z;
		    T48 = T2w + T2v;
		    T49 = FNMS(KP293892626, T48, KP475528258 * T47);
		    T4h = FMA(KP475528258, T48, KP293892626 * T47);
		    T4a = T3N - T3O;
		    T4b = T41 + T42;
		    T4c = T3Y + T3Z;
		    T4d = T4b + T4c;
		    T4e = FNMS(KP125000000, T4d, KP500000000 * T4a);
		    T4f = KP279508497 * (T4b - T4c);
	       }
	       Rm[WS(rs, 4)] = KP500000000 * (T4a + T4d);
	       T4i = T4f + T4e;
	       Rm[WS(rs, 8)] = T4h + T4i;
	       Rm[0] = T4i - T4h;
	       T4g = T4e - T4f;
	       Rp[WS(rs, 3)] = T49 + T4g;
	       Rp[WS(rs, 7)] = T4g - T49;
	  }
	  {
	       E T50, T52, T34, T2Z, T4R, T4S, T51, T4T;
	       {
		    E T4W, T4Z, T2N, T2Y;
		    T4W = T4U - T4V;
		    T4Z = T4X - T4Y;
		    T50 = FNMS(KP293892626, T4Z, KP475528258 * T4W);
		    T52 = FMA(KP293892626, T4W, KP475528258 * T4Z);
		    T34 = T32 + T33;
		    T2N = T2H - T2M;
		    T2Y = T2S + T2X;
		    T2Z = T2N - T2Y;
		    T4R = FMA(KP500000000, T34, KP125000000 * T2Z);
		    T4S = KP279508497 * (T2Y + T2N);
	       }
	       Im[WS(rs, 9)] = KP500000000 * (T2Z - T34);
	       T51 = T4R - T4S;
	       Ip[WS(rs, 2)] = T51 + T52;
	       Im[WS(rs, 1)] = T52 - T51;
	       T4T = T4R + T4S;
	       Ip[WS(rs, 6)] = T4T + T50;
	       Im[WS(rs, 5)] = T50 - T4T;
	  }
	  {
	       E T5c, T5d, T53, T56, T57, T58, T5e, T59;
	       {
		    E T5a, T5b, T54, T55;
		    T5a = T2M + T2H;
		    T5b = T2S - T2X;
		    T5c = FNMS(KP293892626, T5b, KP475528258 * T5a);
		    T5d = FMA(KP475528258, T5b, KP293892626 * T5a);
		    T53 = T4G - T4H;
		    T54 = T4V + T4U;
		    T55 = T4X + T4Y;
		    T56 = T54 + T55;
		    T57 = FNMS(KP125000000, T56, KP500000000 * T53);
		    T58 = KP279508497 * (T54 - T55);
	       }
	       Rm[WS(rs, 9)] = KP500000000 * (T53 + T56);
	       T5e = T58 + T57;
	       Rp[WS(rs, 6)] = T5d + T5e;
	       Rm[WS(rs, 5)] = T5e - T5d;
	       T59 = T57 - T58;
	       Rp[WS(rs, 2)] = T59 - T5c;
	       Rm[WS(rs, 1)] = T5c + T59;
	  }
	  {
	       E T4A, T4C, T35, T3c, T4j, T4k, T4B, T4l;
	       {
		    E T4s, T4z, T38, T3b;
		    T4s = T4o - T4r;
		    T4z = T4v - T4y;
		    T4A = FNMS(KP475528258, T4z, KP293892626 * T4s);
		    T4C = FMA(KP475528258, T4s, KP293892626 * T4z);
		    T35 = T33 - T32;
		    T38 = T36 + T37;
		    T3b = T39 + T3a;
		    T3c = T38 + T3b;
		    T4j = FNMS(KP125000000, T3c, KP500000000 * T35);
		    T4k = KP279508497 * (T38 - T3b);
	       }
	       Ip[0] = KP500000000 * (T35 + T3c);
	       T4B = T4k + T4j;
	       Ip[WS(rs, 4)] = T4B + T4C;
	       Im[WS(rs, 3)] = T4C - T4B;
	       T4l = T4j - T4k;
	       Ip[WS(rs, 8)] = T4l + T4A;
	       Im[WS(rs, 7)] = T4A - T4l;
	  }
	  {
	       E T4O, T4P, T4I, T4J, T4F, T4K, T4Q, T4L;
	       {
		    E T4M, T4N, T4D, T4E;
		    T4M = T36 - T37;
		    T4N = T39 - T3a;
		    T4O = FMA(KP475528258, T4M, KP293892626 * T4N);
		    T4P = FNMS(KP293892626, T4M, KP475528258 * T4N);
		    T4I = T4G + T4H;
		    T4D = T4o + T4r;
		    T4E = T4v + T4y;
		    T4J = T4D + T4E;
		    T4F = KP279508497 * (T4D - T4E);
		    T4K = FNMS(KP125000000, T4J, KP500000000 * T4I);
	       }
	       Rp[0] = KP500000000 * (T4I + T4J);
	       T4Q = T4K - T4F;
	       Rp[WS(rs, 8)] = T4P + T4Q;
	       Rm[WS(rs, 7)] = T4Q - T4P;
	       T4L = T4F + T4K;
	       Rp[WS(rs, 4)] = T4L - T4O;
	       Rm[WS(rs, 3)] = T4O + T4L;
	  }
     }
}

static const tw_instr twinstr[] = {
     {TW_FULL, 1, 20},
     {TW_NEXT, 1, 0}
};

static const hc2c_desc desc = { 20, "hc2cfdft_20", twinstr, &GENUS, {224, 78, 62, 0} };

void X(codelet_hc2cfdft_20) (planner *p) {
     X(khc2c_register) (p, hc2cfdft_20, &desc, HC2C_VIA_DFT);
}
#endif				/* HAVE_FMA */