view Lib/fftw-3.2.1/rdft/scalar/r2cf/hc2cfdft2_16.c @ 2:c649e493c30a

Removed a redundant cout<<
author Geogaddi\David <d.m.ronan@qmul.ac.uk>
date Thu, 09 Jul 2015 21:45:55 +0100
parents 25bf17994ef1
children
line wrap: on
line source
/*
 * Copyright (c) 2003, 2007-8 Matteo Frigo
 * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Mon Feb  9 19:54:51 EST 2009 */

#include "codelet-rdft.h"

#ifdef HAVE_FMA

/* Generated by: ../../../genfft/gen_hc2cdft -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 16 -dit -name hc2cfdft2_16 -include hc2cf.h */

/*
 * This function contains 228 FP additions, 166 FP multiplications,
 * (or, 136 additions, 74 multiplications, 92 fused multiply/add),
 * 103 stack variables, 4 constants, and 64 memory accesses
 */
#include "hc2cf.h"

static void hc2cfdft2_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
     DK(KP923879532, +0.923879532511286756128183189396788286822416626);
     DK(KP414213562, +0.414213562373095048801688724209698078569671875);
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
     INT m;
     for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(rs)) {
	  E T4p, T4o, T4n, T4s;
	  {
	       E T1, T2, Tw, Ty, Th, T3, Tx, TE, Ti, TK, Tj, T4, T5;
	       T1 = W[0];
	       T2 = W[2];
	       Tw = W[6];
	       Ty = W[7];
	       Th = W[4];
	       T3 = T1 * T2;
	       Tx = T1 * Tw;
	       TE = T1 * Ty;
	       Ti = T1 * Th;
	       TK = T2 * Th;
	       Tj = W[5];
	       T4 = W[1];
	       T5 = W[3];
	       {
		    E T1v, T2q, T1s, T2s, T38, T3T, T1Y, T3P, T17, T1h, T2x, T2v, T33, T3Q, T3S;
		    E T1N, Tv, T3A, T2E, T3B, T3L, T2c, T3I, T2S, TW, T3E, T3J, T2n, T3D, T2J;
		    E T3M, T2X;
		    {
			 E TF, Tk, Tz, TL, T6, TR, Tq, Tc, T2h, T25, T2k, T29, T1G, T1M, T2P;
			 E T2R;
			 {
			      E T18, TY, T1d, T13, T1H, T1A, T1K, T1E, T37, T1R, T35, T1X;
			      {
				   E T1j, T1o, T1W, T1p, T1m, T1Q, T1U, T1q;
				   {
					E T1k, T1l, T1S, T1T;
					{
					     E T1t, T28, T24, T1D, T1z, T1u, TQ, Tp, Tb;
					     T1t = Ip[0];
					     TQ = T2 * Tj;
					     Tp = T1 * Tj;
					     TF = FNMS(T4, Tw, TE);
					     T1j = FMA(T4, Tj, Ti);
					     Tk = FNMS(T4, Tj, Ti);
					     Tz = FMA(T4, Ty, Tx);
					     T18 = FNMS(T5, Tj, TK);
					     TL = FMA(T5, Tj, TK);
					     TY = FNMS(T4, T5, T3);
					     T6 = FMA(T4, T5, T3);
					     Tb = T1 * T5;
					     TR = FNMS(T5, Th, TQ);
					     T1d = FMA(T5, Th, TQ);
					     Tq = FMA(T4, Th, Tp);
					     T1o = FNMS(T4, Th, Tp);
					     T28 = T6 * Tj;
					     T24 = T6 * Th;
					     T1D = TY * Tj;
					     T1z = TY * Th;
					     Tc = FNMS(T4, T2, Tb);
					     T13 = FMA(T4, T2, Tb);
					     T1u = Im[0];
					     T1k = Ip[WS(rs, 4)];
					     T2h = FMA(Tc, Tj, T24);
					     T25 = FNMS(Tc, Tj, T24);
					     T2k = FNMS(Tc, Th, T28);
					     T29 = FMA(Tc, Th, T28);
					     T1H = FNMS(T13, Tj, T1z);
					     T1A = FMA(T13, Tj, T1z);
					     T1K = FMA(T13, Th, T1D);
					     T1E = FNMS(T13, Th, T1D);
					     T1W = T1t + T1u;
					     T1v = T1t - T1u;
					     T1l = Im[WS(rs, 4)];
					}
					T1S = Rm[0];
					T1T = Rp[0];
					T1p = Rp[WS(rs, 4)];
					T1m = T1k - T1l;
					T1Q = T1k + T1l;
					T2q = T1T + T1S;
					T1U = T1S - T1T;
					T1q = Rm[WS(rs, 4)];
				   }
				   {
					E T36, T1V, T1O, T1r, T1n, T1P, T34, T2r;
					T36 = T4 * T1U;
					T1V = T1 * T1U;
					T1O = T1q - T1p;
					T1r = T1p + T1q;
					T1n = T1j * T1m;
					T37 = FMA(T1, T1W, T36);
					T2r = T1j * T1r;
					T1P = Th * T1O;
					T34 = Tj * T1O;
					T1s = FNMS(T1o, T1r, T1n);
					T2s = FMA(T1o, T1m, T2r);
					T1R = FNMS(Tj, T1Q, T1P);
					T35 = FMA(Th, T1Q, T34);
					T1X = FNMS(T4, T1W, T1V);
				   }
			      }
			      {
				   E T1F, T11, T1e, T16, T1L, T1b, T1f, T1C, T2Z;
				   {
					E T14, T15, TZ, T10, T19, T1a, T1B;
					TZ = Ip[WS(rs, 2)];
					T10 = Im[WS(rs, 2)];
					T38 = T35 + T37;
					T3T = T37 - T35;
					T1Y = T1R + T1X;
					T3P = T1X - T1R;
					T1F = TZ + T10;
					T11 = TZ - T10;
					T14 = Rp[WS(rs, 2)];
					T15 = Rm[WS(rs, 2)];
					T19 = Ip[WS(rs, 6)];
					T1a = Im[WS(rs, 6)];
					T1e = Rp[WS(rs, 6)];
					T16 = T14 + T15;
					T1B = T15 - T14;
					T1L = T19 + T1a;
					T1b = T19 - T1a;
					T1f = Rm[WS(rs, 6)];
					T1C = T1A * T1B;
					T2Z = T1E * T1B;
				   }
				   {
					E T1J, T31, T2u, T30, T32;
					{
					     E T12, T1g, T1I, T1c, T2w;
					     T12 = TY * T11;
					     T1g = T1e + T1f;
					     T1I = T1f - T1e;
					     T1c = T18 * T1b;
					     T17 = FNMS(T13, T16, T12);
					     T2w = T18 * T1g;
					     T1J = T1H * T1I;
					     T31 = T1K * T1I;
					     T1h = FNMS(T1d, T1g, T1c);
					     T2x = FMA(T1d, T1b, T2w);
					}
					T2u = TY * T16;
					T30 = FMA(T1A, T1F, T2Z);
					T32 = FMA(T1H, T1L, T31);
					T1G = FNMS(T1E, T1F, T1C);
					T2v = FMA(T13, T11, T2u);
					T1M = FNMS(T1K, T1L, T1J);
					T33 = T30 + T32;
					T3Q = T30 - T32;
				   }
			      }
			 }
			 {
			      E Tl, T22, T9, T20, Tf, T2O, Ta, T21, T2A, Tm, Tr, Ts;
			      {
				   E T7, T8, Td, Te;
				   T7 = Ip[WS(rs, 1)];
				   T3S = T1G - T1M;
				   T1N = T1G + T1M;
				   T8 = Im[WS(rs, 1)];
				   Td = Rp[WS(rs, 1)];
				   Te = Rm[WS(rs, 1)];
				   Tl = Ip[WS(rs, 5)];
				   T22 = T7 + T8;
				   T9 = T7 - T8;
				   T20 = Td - Te;
				   Tf = Td + Te;
				   T2O = T2 * T22;
				   Ta = T6 * T9;
				   T21 = T2 * T20;
				   T2A = T6 * Tf;
				   Tm = Im[WS(rs, 5)];
				   Tr = Rp[WS(rs, 5)];
				   Ts = Rm[WS(rs, 5)];
			      }
			      {
				   E Tg, T2a, Tn, T26, T2Q, T27, T2C, T2B, Tu, Tt, To, T23, T2D, T2b;
				   Tg = FNMS(Tc, Tf, Ta);
				   T2a = Tl + Tm;
				   Tn = Tl - Tm;
				   T26 = Tr - Ts;
				   Tt = Tr + Ts;
				   T2Q = T25 * T2a;
				   To = Tk * Tn;
				   T27 = T25 * T26;
				   T2C = Tk * Tt;
				   T2B = FMA(Tc, T9, T2A);
				   Tu = FNMS(Tq, Tt, To);
				   T23 = FMA(T5, T22, T21);
				   T2D = FMA(Tq, Tn, T2C);
				   T2b = FMA(T29, T2a, T27);
				   Tv = Tg + Tu;
				   T3A = Tg - Tu;
				   T2P = FNMS(T5, T20, T2O);
				   T2E = T2B + T2D;
				   T3B = T2B - T2D;
				   T3L = T2b - T23;
				   T2c = T23 + T2b;
				   T2R = FNMS(T29, T26, T2Q);
			      }
			 }
			 {
			      E T2f, TC, T2T, TD, T2d, TI, TS, T2e, T2F, T2l, TO, TT;
			      {
				   E TG, TH, TA, TB, TM, TN;
				   TA = Ip[WS(rs, 7)];
				   TB = Im[WS(rs, 7)];
				   TG = Rp[WS(rs, 7)];
				   T3I = T2R - T2P;
				   T2S = T2P + T2R;
				   T2f = TA + TB;
				   TC = TA - TB;
				   TH = Rm[WS(rs, 7)];
				   TM = Ip[WS(rs, 3)];
				   T2T = Tw * T2f;
				   TD = Tz * TC;
				   T2d = TG - TH;
				   TI = TG + TH;
				   TN = Im[WS(rs, 3)];
				   TS = Rp[WS(rs, 3)];
				   T2e = Tw * T2d;
				   T2F = Tz * TI;
				   T2l = TM + TN;
				   TO = TM - TN;
				   TT = Rm[WS(rs, 3)];
			      }
			      {
				   E TJ, T2V, TP, T2i, TU, T2G;
				   TJ = FNMS(TF, TI, TD);
				   T2V = T2h * T2l;
				   TP = TL * TO;
				   T2i = TS - TT;
				   TU = TS + TT;
				   T2G = FMA(TF, TC, T2F);
				   {
					E T2g, T2j, TV, T2H;
					T2g = FMA(Ty, T2f, T2e);
					T2j = T2h * T2i;
					TV = FNMS(TR, TU, TP);
					T2H = TL * TU;
					{
					     E T2U, T2m, T2I, T2W;
					     T2U = FNMS(Ty, T2d, T2T);
					     T2m = FMA(T2k, T2l, T2j);
					     TW = TJ + TV;
					     T3E = TJ - TV;
					     T2I = FMA(TR, TO, T2H);
					     T2W = FNMS(T2k, T2i, T2V);
					     T3J = T2m - T2g;
					     T2n = T2g + T2m;
					     T3D = T2G - T2I;
					     T2J = T2G + T2I;
					     T3M = T2U - T2W;
					     T2X = T2U + T2W;
					}
				   }
			      }
			 }
		    }
		    {
			 E T3Y, T3x, T3X, T3y, T3r, T3q, T3p, T3u;
			 {
			      E T2Y, T3o, TX, T3s, T3i, T39, T3t, T3l, T3e, T1x, T2M, T2p, T3d, T2K, T2t;
			      E T2y;
			      {
				   E T2o, T1Z, T3j, T3k, T1i, T1w, T3g, T3h;
				   T2Y = T2S + T2X;
				   T3g = T2X - T2S;
				   T3h = T2c - T2n;
				   T2o = T2c + T2n;
				   T1Z = T1N + T1Y;
				   T3j = T1Y - T1N;
				   T3o = Tv - TW;
				   TX = Tv + TW;
				   T3s = T3g - T3h;
				   T3i = T3g + T3h;
				   T3k = T38 - T33;
				   T39 = T33 + T38;
				   T3Y = T17 - T1h;
				   T1i = T17 + T1h;
				   T1w = T1s + T1v;
				   T3x = T1v - T1s;
				   T3t = T3j + T3k;
				   T3l = T3j - T3k;
				   T3e = T1w - T1i;
				   T1x = T1i + T1w;
				   T2M = T2o + T1Z;
				   T2p = T1Z - T2o;
				   T3d = T2J - T2E;
				   T2K = T2E + T2J;
				   T3X = T2q - T2s;
				   T2t = T2q + T2s;
				   T2y = T2v + T2x;
				   T3y = T2v - T2x;
			      }
			      {
				   E T2N, T3c, T3a, T3n, T3b, T2L, T2z, T1y;
				   T2N = T1x - TX;
				   T1y = TX + T1x;
				   T3c = T2Y + T39;
				   T3a = T2Y - T39;
				   T3n = T2t - T2y;
				   T2z = T2t + T2y;
				   Ip[0] = KP500000000 * (T1y + T2p);
				   Im[WS(rs, 7)] = KP500000000 * (T2p - T1y);
				   T3b = T2z + T2K;
				   T2L = T2z - T2K;
				   {
					E T3f, T3m, T3v, T3w;
					T3r = T3e - T3d;
					T3f = T3d + T3e;
					Im[WS(rs, 3)] = KP500000000 * (T3a - T2N);
					Ip[WS(rs, 4)] = KP500000000 * (T2N + T3a);
					Rp[WS(rs, 4)] = KP500000000 * (T2L + T2M);
					Rm[WS(rs, 3)] = KP500000000 * (T2L - T2M);
					Rp[0] = KP500000000 * (T3b + T3c);
					Rm[WS(rs, 7)] = KP500000000 * (T3b - T3c);
					T3m = T3i + T3l;
					T3q = T3l - T3i;
					T3p = T3n - T3o;
					T3v = T3n + T3o;
					T3w = T3s + T3t;
					T3u = T3s - T3t;
					Im[WS(rs, 5)] = -(KP500000000 * (FNMS(KP707106781, T3m, T3f)));
					Ip[WS(rs, 2)] = KP500000000 * (FMA(KP707106781, T3m, T3f));
					Rp[WS(rs, 2)] = KP500000000 * (FMA(KP707106781, T3w, T3v));
					Rm[WS(rs, 5)] = KP500000000 * (FNMS(KP707106781, T3w, T3v));
				   }
			      }
			 }
			 {
			      E T3R, T4b, T3z, T4q, T4g, T3U, T40, T41, T4r, T4j, T4m, T3G, T46, T3O, T4l;
			      E T3Z, T4c;
			      {
				   E T3K, T3N, T4h, T4i, T3C, T3F, T4e, T4f;
				   Rp[WS(rs, 6)] = KP500000000 * (FMA(KP707106781, T3q, T3p));
				   Rm[WS(rs, 1)] = KP500000000 * (FNMS(KP707106781, T3q, T3p));
				   Im[WS(rs, 1)] = -(KP500000000 * (FNMS(KP707106781, T3u, T3r)));
				   Ip[WS(rs, 6)] = KP500000000 * (FMA(KP707106781, T3u, T3r));
				   T3K = T3I + T3J;
				   T4e = T3I - T3J;
				   T4f = T3M - T3L;
				   T3N = T3L + T3M;
				   T3R = T3P - T3Q;
				   T4h = T3Q + T3P;
				   T4b = T3y + T3x;
				   T3z = T3x - T3y;
				   T4q = FNMS(KP414213562, T4e, T4f);
				   T4g = FMA(KP414213562, T4f, T4e);
				   T4i = T3T - T3S;
				   T3U = T3S + T3T;
				   T40 = T3B + T3A;
				   T3C = T3A - T3B;
				   T3F = T3D + T3E;
				   T41 = T3D - T3E;
				   T4r = FNMS(KP414213562, T4h, T4i);
				   T4j = FMA(KP414213562, T4i, T4h);
				   T4m = T3C - T3F;
				   T3G = T3C + T3F;
				   T46 = FNMS(KP414213562, T3K, T3N);
				   T3O = FMA(KP414213562, T3N, T3K);
				   T4l = T3X - T3Y;
				   T3Z = T3X + T3Y;
			      }
			      {
				   E T45, T3H, T42, T47, T3V;
				   T45 = FNMS(KP707106781, T3G, T3z);
				   T3H = FMA(KP707106781, T3G, T3z);
				   T4c = T41 - T40;
				   T42 = T40 + T41;
				   T47 = FMA(KP414213562, T3R, T3U);
				   T3V = FNMS(KP414213562, T3U, T3R);
				   {
					E T49, T43, T48, T4a, T44, T3W;
					T49 = FMA(KP707106781, T42, T3Z);
					T43 = FNMS(KP707106781, T42, T3Z);
					T48 = T46 - T47;
					T4a = T46 + T47;
					T44 = T3V - T3O;
					T3W = T3O + T3V;
					Rp[WS(rs, 1)] = KP500000000 * (FMA(KP923879532, T4a, T49));
					Rm[WS(rs, 6)] = KP500000000 * (FNMS(KP923879532, T4a, T49));
					Rp[WS(rs, 5)] = KP500000000 * (FMA(KP923879532, T44, T43));
					Rm[WS(rs, 2)] = KP500000000 * (FNMS(KP923879532, T44, T43));
					Im[WS(rs, 6)] = -(KP500000000 * (FNMS(KP923879532, T3W, T3H)));
					Ip[WS(rs, 1)] = KP500000000 * (FMA(KP923879532, T3W, T3H));
					Ip[WS(rs, 5)] = KP500000000 * (FMA(KP923879532, T48, T45));
					Im[WS(rs, 2)] = -(KP500000000 * (FNMS(KP923879532, T48, T45)));
				   }
			      }
			      {
				   E T4d, T4k, T4t, T4u;
				   T4p = FMA(KP707106781, T4c, T4b);
				   T4d = FNMS(KP707106781, T4c, T4b);
				   T4k = T4g - T4j;
				   T4o = T4g + T4j;
				   T4n = FMA(KP707106781, T4m, T4l);
				   T4t = FNMS(KP707106781, T4m, T4l);
				   T4u = T4q + T4r;
				   T4s = T4q - T4r;
				   Im[0] = -(KP500000000 * (FNMS(KP923879532, T4k, T4d)));
				   Ip[WS(rs, 7)] = KP500000000 * (FMA(KP923879532, T4k, T4d));
				   Rm[0] = KP500000000 * (FMA(KP923879532, T4u, T4t));
				   Rp[WS(rs, 7)] = KP500000000 * (FNMS(KP923879532, T4u, T4t));
			      }
			 }
		    }
	       }
	  }
	  Rp[WS(rs, 3)] = KP500000000 * (FMA(KP923879532, T4o, T4n));
	  Rm[WS(rs, 4)] = KP500000000 * (FNMS(KP923879532, T4o, T4n));
	  Im[WS(rs, 4)] = -(KP500000000 * (FNMS(KP923879532, T4s, T4p)));
	  Ip[WS(rs, 3)] = KP500000000 * (FMA(KP923879532, T4s, T4p));
     }
}

static const tw_instr twinstr[] = {
     {TW_CEXP, 1, 1},
     {TW_CEXP, 1, 3},
     {TW_CEXP, 1, 9},
     {TW_CEXP, 1, 15},
     {TW_NEXT, 1, 0}
};

static const hc2c_desc desc = { 16, "hc2cfdft2_16", twinstr, &GENUS, {136, 74, 92, 0} };

void X(codelet_hc2cfdft2_16) (planner *p) {
     X(khc2c_register) (p, hc2cfdft2_16, &desc, HC2C_VIA_DFT);
}
#else				/* HAVE_FMA */

/* Generated by: ../../../genfft/gen_hc2cdft -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 16 -dit -name hc2cfdft2_16 -include hc2cf.h */

/*
 * This function contains 228 FP additions, 124 FP multiplications,
 * (or, 188 additions, 84 multiplications, 40 fused multiply/add),
 * 91 stack variables, 4 constants, and 64 memory accesses
 */
#include "hc2cf.h"

static void hc2cfdft2_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
     DK(KP461939766, +0.461939766255643378064091594698394143411208313);
     DK(KP191341716, +0.191341716182544885864229992015199433380672281);
     DK(KP353553390, +0.353553390593273762200422181052424519642417969);
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
     INT m;
     for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(rs)) {
	  E T1, T4, T2, T5, T7, Td, T12, TY, Tk, Ti, Tm, T1l, T1b, TL, T1h;
	  E Ts, TR, T17, Ty, Tz, TA, TE, T1L, T1Q, T1H, T1O, T24, T2d, T20, T2b;
	  {
	       E Tl, TP, Tq, TK, Tj, TQ, Tr, TJ;
	       {
		    E T3, Tc, T6, Tb;
		    T1 = W[0];
		    T4 = W[1];
		    T2 = W[2];
		    T5 = W[3];
		    T3 = T1 * T2;
		    Tc = T4 * T2;
		    T6 = T4 * T5;
		    Tb = T1 * T5;
		    T7 = T3 + T6;
		    Td = Tb - Tc;
		    T12 = Tb + Tc;
		    TY = T3 - T6;
		    Tk = W[5];
		    Tl = T4 * Tk;
		    TP = T2 * Tk;
		    Tq = T1 * Tk;
		    TK = T5 * Tk;
		    Ti = W[4];
		    Tj = T1 * Ti;
		    TQ = T5 * Ti;
		    Tr = T4 * Ti;
		    TJ = T2 * Ti;
	       }
	       Tm = Tj - Tl;
	       T1l = Tq - Tr;
	       T1b = TP + TQ;
	       TL = TJ + TK;
	       T1h = Tj + Tl;
	       Ts = Tq + Tr;
	       TR = TP - TQ;
	       T17 = TJ - TK;
	       Ty = W[6];
	       Tz = W[7];
	       TA = FMA(T1, Ty, T4 * Tz);
	       TE = FNMS(T4, Ty, T1 * Tz);
	       {
		    E T1J, T1K, T1F, T1G;
		    T1J = TY * Tk;
		    T1K = T12 * Ti;
		    T1L = T1J - T1K;
		    T1Q = T1J + T1K;
		    T1F = TY * Ti;
		    T1G = T12 * Tk;
		    T1H = T1F + T1G;
		    T1O = T1F - T1G;
	       }
	       {
		    E T22, T23, T1Y, T1Z;
		    T22 = T7 * Tk;
		    T23 = Td * Ti;
		    T24 = T22 + T23;
		    T2d = T22 - T23;
		    T1Y = T7 * Ti;
		    T1Z = Td * Tk;
		    T20 = T1Y - T1Z;
		    T2b = T1Y + T1Z;
	       }
	  }
	  {
	       E T1t, T3i, T2l, T3B, T1E, T3t, T2M, T3x, T1g, T3C, T2J, T3u, T1T, T3w, T2o;
	       E T3j, Tx, T3b, T2C, T3q, T27, T3m, T2s, T3c, TW, T3f, T2F, T3n, T2g, T3p;
	       E T2v, T3e;
	       {
		    E T1k, T1C, T1o, T1B, T1s, T1z, T1y, T2j, T1p, T2k;
		    {
			 E T1i, T1j, T1m, T1n;
			 T1i = Ip[WS(rs, 4)];
			 T1j = Im[WS(rs, 4)];
			 T1k = T1i - T1j;
			 T1C = T1i + T1j;
			 T1m = Rp[WS(rs, 4)];
			 T1n = Rm[WS(rs, 4)];
			 T1o = T1m + T1n;
			 T1B = T1m - T1n;
		    }
		    {
			 E T1q, T1r, T1w, T1x;
			 T1q = Ip[0];
			 T1r = Im[0];
			 T1s = T1q - T1r;
			 T1z = T1q + T1r;
			 T1w = Rm[0];
			 T1x = Rp[0];
			 T1y = T1w - T1x;
			 T2j = T1x + T1w;
		    }
		    T1p = FNMS(T1l, T1o, T1h * T1k);
		    T1t = T1p + T1s;
		    T3i = T1s - T1p;
		    T2k = FMA(T1h, T1o, T1l * T1k);
		    T2l = T2j + T2k;
		    T3B = T2j - T2k;
		    {
			 E T1A, T1D, T2K, T2L;
			 T1A = FNMS(T4, T1z, T1 * T1y);
			 T1D = FMA(Ti, T1B, Tk * T1C);
			 T1E = T1A - T1D;
			 T3t = T1D + T1A;
			 T2K = FNMS(Tk, T1B, Ti * T1C);
			 T2L = FMA(T4, T1y, T1 * T1z);
			 T2M = T2K + T2L;
			 T3x = T2L - T2K;
		    }
	       }
	       {
		    E T11, T1M, T15, T1I, T1a, T1R, T1e, T1P;
		    {
			 E TZ, T10, T13, T14;
			 TZ = Ip[WS(rs, 2)];
			 T10 = Im[WS(rs, 2)];
			 T11 = TZ - T10;
			 T1M = TZ + T10;
			 T13 = Rp[WS(rs, 2)];
			 T14 = Rm[WS(rs, 2)];
			 T15 = T13 + T14;
			 T1I = T13 - T14;
		    }
		    {
			 E T18, T19, T1c, T1d;
			 T18 = Ip[WS(rs, 6)];
			 T19 = Im[WS(rs, 6)];
			 T1a = T18 - T19;
			 T1R = T18 + T19;
			 T1c = Rp[WS(rs, 6)];
			 T1d = Rm[WS(rs, 6)];
			 T1e = T1c + T1d;
			 T1P = T1c - T1d;
		    }
		    {
			 E T16, T1f, T2H, T2I;
			 T16 = FNMS(T12, T15, TY * T11);
			 T1f = FNMS(T1b, T1e, T17 * T1a);
			 T1g = T16 + T1f;
			 T3C = T16 - T1f;
			 T2H = FNMS(T1L, T1I, T1H * T1M);
			 T2I = FNMS(T1Q, T1P, T1O * T1R);
			 T2J = T2H + T2I;
			 T3u = T2H - T2I;
		    }
		    {
			 E T1N, T1S, T2m, T2n;
			 T1N = FMA(T1H, T1I, T1L * T1M);
			 T1S = FMA(T1O, T1P, T1Q * T1R);
			 T1T = T1N + T1S;
			 T3w = T1S - T1N;
			 T2m = FMA(TY, T15, T12 * T11);
			 T2n = FMA(T17, T1e, T1b * T1a);
			 T2o = T2m + T2n;
			 T3j = T2m - T2n;
		    }
	       }
	       {
		    E Ta, T1W, Tg, T1V, Tp, T25, Tv, T21;
		    {
			 E T8, T9, Te, Tf;
			 T8 = Ip[WS(rs, 1)];
			 T9 = Im[WS(rs, 1)];
			 Ta = T8 - T9;
			 T1W = T8 + T9;
			 Te = Rp[WS(rs, 1)];
			 Tf = Rm[WS(rs, 1)];
			 Tg = Te + Tf;
			 T1V = Te - Tf;
		    }
		    {
			 E Tn, To, Tt, Tu;
			 Tn = Ip[WS(rs, 5)];
			 To = Im[WS(rs, 5)];
			 Tp = Tn - To;
			 T25 = Tn + To;
			 Tt = Rp[WS(rs, 5)];
			 Tu = Rm[WS(rs, 5)];
			 Tv = Tt + Tu;
			 T21 = Tt - Tu;
		    }
		    {
			 E Th, Tw, T2A, T2B;
			 Th = FNMS(Td, Tg, T7 * Ta);
			 Tw = FNMS(Ts, Tv, Tm * Tp);
			 Tx = Th + Tw;
			 T3b = Th - Tw;
			 T2A = FNMS(T5, T1V, T2 * T1W);
			 T2B = FNMS(T24, T21, T20 * T25);
			 T2C = T2A + T2B;
			 T3q = T2A - T2B;
		    }
		    {
			 E T1X, T26, T2q, T2r;
			 T1X = FMA(T2, T1V, T5 * T1W);
			 T26 = FMA(T20, T21, T24 * T25);
			 T27 = T1X + T26;
			 T3m = T26 - T1X;
			 T2q = FMA(T7, Tg, Td * Ta);
			 T2r = FMA(Tm, Tv, Ts * Tp);
			 T2s = T2q + T2r;
			 T3c = T2q - T2r;
		    }
	       }
	       {
		    E TD, T29, TH, T28, TO, T2e, TU, T2c;
		    {
			 E TB, TC, TF, TG;
			 TB = Ip[WS(rs, 7)];
			 TC = Im[WS(rs, 7)];
			 TD = TB - TC;
			 T29 = TB + TC;
			 TF = Rp[WS(rs, 7)];
			 TG = Rm[WS(rs, 7)];
			 TH = TF + TG;
			 T28 = TF - TG;
		    }
		    {
			 E TM, TN, TS, TT;
			 TM = Ip[WS(rs, 3)];
			 TN = Im[WS(rs, 3)];
			 TO = TM - TN;
			 T2e = TM + TN;
			 TS = Rp[WS(rs, 3)];
			 TT = Rm[WS(rs, 3)];
			 TU = TS + TT;
			 T2c = TS - TT;
		    }
		    {
			 E TI, TV, T2D, T2E;
			 TI = FNMS(TE, TH, TA * TD);
			 TV = FNMS(TR, TU, TL * TO);
			 TW = TI + TV;
			 T3f = TI - TV;
			 T2D = FNMS(Tz, T28, Ty * T29);
			 T2E = FNMS(T2d, T2c, T2b * T2e);
			 T2F = T2D + T2E;
			 T3n = T2D - T2E;
		    }
		    {
			 E T2a, T2f, T2t, T2u;
			 T2a = FMA(Ty, T28, Tz * T29);
			 T2f = FMA(T2b, T2c, T2d * T2e);
			 T2g = T2a + T2f;
			 T3p = T2f - T2a;
			 T2t = FMA(TA, TH, TE * TD);
			 T2u = FMA(TL, TU, TR * TO);
			 T2v = T2t + T2u;
			 T3e = T2t - T2u;
		    }
	       }
	       {
		    E T1v, T2z, T2O, T2Q, T2i, T2y, T2x, T2P;
		    {
			 E TX, T1u, T2G, T2N;
			 TX = Tx + TW;
			 T1u = T1g + T1t;
			 T1v = TX + T1u;
			 T2z = T1u - TX;
			 T2G = T2C + T2F;
			 T2N = T2J + T2M;
			 T2O = T2G - T2N;
			 T2Q = T2G + T2N;
		    }
		    {
			 E T1U, T2h, T2p, T2w;
			 T1U = T1E - T1T;
			 T2h = T27 + T2g;
			 T2i = T1U - T2h;
			 T2y = T2h + T1U;
			 T2p = T2l + T2o;
			 T2w = T2s + T2v;
			 T2x = T2p - T2w;
			 T2P = T2p + T2w;
		    }
		    Ip[0] = KP500000000 * (T1v + T2i);
		    Rp[0] = KP500000000 * (T2P + T2Q);
		    Im[WS(rs, 7)] = KP500000000 * (T2i - T1v);
		    Rm[WS(rs, 7)] = KP500000000 * (T2P - T2Q);
		    Rm[WS(rs, 3)] = KP500000000 * (T2x - T2y);
		    Im[WS(rs, 3)] = KP500000000 * (T2O - T2z);
		    Rp[WS(rs, 4)] = KP500000000 * (T2x + T2y);
		    Ip[WS(rs, 4)] = KP500000000 * (T2z + T2O);
	       }
	       {
		    E T2T, T35, T33, T39, T2W, T36, T2Z, T37;
		    {
			 E T2R, T2S, T31, T32;
			 T2R = T2v - T2s;
			 T2S = T1t - T1g;
			 T2T = KP500000000 * (T2R + T2S);
			 T35 = KP500000000 * (T2S - T2R);
			 T31 = T2l - T2o;
			 T32 = Tx - TW;
			 T33 = KP500000000 * (T31 - T32);
			 T39 = KP500000000 * (T31 + T32);
		    }
		    {
			 E T2U, T2V, T2X, T2Y;
			 T2U = T2F - T2C;
			 T2V = T27 - T2g;
			 T2W = T2U + T2V;
			 T36 = T2U - T2V;
			 T2X = T1T + T1E;
			 T2Y = T2M - T2J;
			 T2Z = T2X - T2Y;
			 T37 = T2X + T2Y;
		    }
		    {
			 E T30, T3a, T34, T38;
			 T30 = KP353553390 * (T2W + T2Z);
			 Ip[WS(rs, 2)] = T2T + T30;
			 Im[WS(rs, 5)] = T30 - T2T;
			 T3a = KP353553390 * (T36 + T37);
			 Rm[WS(rs, 5)] = T39 - T3a;
			 Rp[WS(rs, 2)] = T39 + T3a;
			 T34 = KP353553390 * (T2Z - T2W);
			 Rm[WS(rs, 1)] = T33 - T34;
			 Rp[WS(rs, 6)] = T33 + T34;
			 T38 = KP353553390 * (T36 - T37);
			 Ip[WS(rs, 6)] = T35 + T38;
			 Im[WS(rs, 1)] = T38 - T35;
		    }
	       }
	       {
		    E T3k, T3Q, T3Z, T3D, T3h, T40, T3X, T45, T3G, T3P, T3s, T3K, T3U, T44, T3z;
		    E T3L;
		    {
			 E T3d, T3g, T3o, T3r;
			 T3k = KP500000000 * (T3i - T3j);
			 T3Q = KP500000000 * (T3j + T3i);
			 T3Z = KP500000000 * (T3B - T3C);
			 T3D = KP500000000 * (T3B + T3C);
			 T3d = T3b - T3c;
			 T3g = T3e + T3f;
			 T3h = KP353553390 * (T3d + T3g);
			 T40 = KP353553390 * (T3d - T3g);
			 {
			      E T3V, T3W, T3E, T3F;
			      T3V = T3u + T3t;
			      T3W = T3x - T3w;
			      T3X = FNMS(KP461939766, T3W, KP191341716 * T3V);
			      T45 = FMA(KP461939766, T3V, KP191341716 * T3W);
			      T3E = T3c + T3b;
			      T3F = T3e - T3f;
			      T3G = KP353553390 * (T3E + T3F);
			      T3P = KP353553390 * (T3F - T3E);
			 }
			 T3o = T3m + T3n;
			 T3r = T3p - T3q;
			 T3s = FMA(KP191341716, T3o, KP461939766 * T3r);
			 T3K = FNMS(KP191341716, T3r, KP461939766 * T3o);
			 {
			      E T3S, T3T, T3v, T3y;
			      T3S = T3n - T3m;
			      T3T = T3q + T3p;
			      T3U = FMA(KP461939766, T3S, KP191341716 * T3T);
			      T44 = FNMS(KP461939766, T3T, KP191341716 * T3S);
			      T3v = T3t - T3u;
			      T3y = T3w + T3x;
			      T3z = FNMS(KP191341716, T3y, KP461939766 * T3v);
			      T3L = FMA(KP191341716, T3v, KP461939766 * T3y);
			 }
		    }
		    {
			 E T3l, T3A, T3N, T3O;
			 T3l = T3h + T3k;
			 T3A = T3s + T3z;
			 Ip[WS(rs, 1)] = T3l + T3A;
			 Im[WS(rs, 6)] = T3A - T3l;
			 T3N = T3D + T3G;
			 T3O = T3K + T3L;
			 Rm[WS(rs, 6)] = T3N - T3O;
			 Rp[WS(rs, 1)] = T3N + T3O;
		    }
		    {
			 E T3H, T3I, T3J, T3M;
			 T3H = T3D - T3G;
			 T3I = T3z - T3s;
			 Rm[WS(rs, 2)] = T3H - T3I;
			 Rp[WS(rs, 5)] = T3H + T3I;
			 T3J = T3k - T3h;
			 T3M = T3K - T3L;
			 Ip[WS(rs, 5)] = T3J + T3M;
			 Im[WS(rs, 2)] = T3M - T3J;
		    }
		    {
			 E T3R, T3Y, T47, T48;
			 T3R = T3P + T3Q;
			 T3Y = T3U + T3X;
			 Ip[WS(rs, 3)] = T3R + T3Y;
			 Im[WS(rs, 4)] = T3Y - T3R;
			 T47 = T3Z + T40;
			 T48 = T44 + T45;
			 Rm[WS(rs, 4)] = T47 - T48;
			 Rp[WS(rs, 3)] = T47 + T48;
		    }
		    {
			 E T41, T42, T43, T46;
			 T41 = T3Z - T40;
			 T42 = T3X - T3U;
			 Rm[0] = T41 - T42;
			 Rp[WS(rs, 7)] = T41 + T42;
			 T43 = T3Q - T3P;
			 T46 = T44 - T45;
			 Ip[WS(rs, 7)] = T43 + T46;
			 Im[0] = T46 - T43;
		    }
	       }
	  }
     }
}

static const tw_instr twinstr[] = {
     {TW_CEXP, 1, 1},
     {TW_CEXP, 1, 3},
     {TW_CEXP, 1, 9},
     {TW_CEXP, 1, 15},
     {TW_NEXT, 1, 0}
};

static const hc2c_desc desc = { 16, "hc2cfdft2_16", twinstr, &GENUS, {188, 84, 40, 0} };

void X(codelet_hc2cfdft2_16) (planner *p) {
     X(khc2c_register) (p, hc2cfdft2_16, &desc, HC2C_VIA_DFT);
}
#endif				/* HAVE_FMA */