view Lib/fftw-3.2.1/rdft/scalar/r2cb/hc2cbdft2_8.c @ 2:c649e493c30a

Removed a redundant cout<<
author Geogaddi\David <d.m.ronan@qmul.ac.uk>
date Thu, 09 Jul 2015 21:45:55 +0100
parents 25bf17994ef1
children
line wrap: on
line source
/*
 * Copyright (c) 2003, 2007-8 Matteo Frigo
 * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Mon Feb  9 19:56:16 EST 2009 */

#include "codelet-rdft.h"

#ifdef HAVE_FMA

/* Generated by: ../../../genfft/gen_hc2cdft -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 8 -dif -name hc2cbdft2_8 -include hc2cb.h */

/*
 * This function contains 82 FP additions, 36 FP multiplications,
 * (or, 60 additions, 14 multiplications, 22 fused multiply/add),
 * 55 stack variables, 1 constants, and 32 memory accesses
 */
#include "hc2cb.h"

static void hc2cbdft2_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
     INT m;
     for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(rs)) {
	  E T1m, T1r, T1i, T1u, T1o, T1v, T1n, T1w, T1s;
	  {
	       E T1k, Tl, T1p, TE, TP, T1g, TM, T1b, T1f, T1a, TU, Tf, T1l, TH, Tw;
	       E T1q;
	       {
		    E TA, T3, TN, Tk, Th, T6, TO, TD, Tb, Tm, Ta, TK, Tp, Tc, Ts;
		    E Tt;
		    {
			 E T4, T5, TB, TC;
			 {
			      E T1, T2, Ti, Tj;
			      T1 = Rp[0];
			      T2 = Rm[WS(rs, 3)];
			      Ti = Ip[0];
			      Tj = Im[WS(rs, 3)];
			      T4 = Rp[WS(rs, 2)];
			      TA = T1 - T2;
			      T3 = T1 + T2;
			      TN = Ti - Tj;
			      Tk = Ti + Tj;
			      T5 = Rm[WS(rs, 1)];
			      TB = Ip[WS(rs, 2)];
			      TC = Im[WS(rs, 1)];
			 }
			 {
			      E T8, T9, Tn, To;
			      T8 = Rp[WS(rs, 1)];
			      Th = T4 - T5;
			      T6 = T4 + T5;
			      TO = TB - TC;
			      TD = TB + TC;
			      T9 = Rm[WS(rs, 2)];
			      Tn = Ip[WS(rs, 1)];
			      To = Im[WS(rs, 2)];
			      Tb = Rm[0];
			      Tm = T8 - T9;
			      Ta = T8 + T9;
			      TK = Tn - To;
			      Tp = Tn + To;
			      Tc = Rp[WS(rs, 3)];
			      Ts = Im[0];
			      Tt = Ip[WS(rs, 3)];
			 }
		    }
		    {
			 E Tr, Td, Tu, TL, Te, T7;
			 T1k = Tk - Th;
			 Tl = Th + Tk;
			 Tr = Tb - Tc;
			 Td = Tb + Tc;
			 TL = Tt - Ts;
			 Tu = Ts + Tt;
			 T1p = TA + TD;
			 TE = TA - TD;
			 TP = TN + TO;
			 T1g = TN - TO;
			 TM = TK + TL;
			 T1b = TL - TK;
			 T1f = Ta - Td;
			 Te = Ta + Td;
			 T1a = T3 - T6;
			 T7 = T3 + T6;
			 {
			      E Tq, TF, TG, Tv;
			      Tq = Tm + Tp;
			      TF = Tm - Tp;
			      TG = Tr - Tu;
			      Tv = Tr + Tu;
			      TU = T7 - Te;
			      Tf = T7 + Te;
			      T1l = TF - TG;
			      TH = TF + TG;
			      Tw = Tq - Tv;
			      T1q = Tq + Tv;
			 }
		    }
	       }
	       {
		    E TX, T10, T1c, T13, T1h, T1E, T1H, T1C, T1K, T1G, T1L, T1F;
		    {
			 E TQ, Tx, T1y, TI, Tg, Tz;
			 TX = TP - TM;
			 TQ = TM + TP;
			 Tx = FMA(KP707106781, Tw, Tl);
			 T10 = FNMS(KP707106781, Tw, Tl);
			 T1c = T1a + T1b;
			 T1y = T1a - T1b;
			 T13 = FNMS(KP707106781, TH, TE);
			 TI = FMA(KP707106781, TH, TE);
			 Tg = W[0];
			 Tz = W[1];
			 {
			      E T1B, T1A, T1x, T1J, T1z, T1D;
			      {
				   E TR, Ty, TS, TJ;
				   T1B = T1g - T1f;
				   T1h = T1f + T1g;
				   T1A = W[11];
				   TR = Tg * TI;
				   Ty = Tg * Tx;
				   T1x = W[10];
				   T1J = T1A * T1y;
				   TS = FNMS(Tz, Tx, TR);
				   TJ = FMA(Tz, TI, Ty);
				   T1z = T1x * T1y;
				   T1m = FMA(KP707106781, T1l, T1k);
				   T1E = FNMS(KP707106781, T1l, T1k);
				   Im[0] = TS - TQ;
				   Ip[0] = TQ + TS;
				   Rm[0] = Tf + TJ;
				   Rp[0] = Tf - TJ;
				   T1H = FMA(KP707106781, T1q, T1p);
				   T1r = FNMS(KP707106781, T1q, T1p);
				   T1D = W[12];
			      }
			      T1C = FNMS(T1A, T1B, T1z);
			      T1K = FMA(T1x, T1B, T1J);
			      T1G = W[13];
			      T1L = T1D * T1H;
			      T1F = T1D * T1E;
			 }
		    }
		    {
			 E TY, T16, T12, T17, T11;
			 {
			      E TW, TT, T15, TV, TZ, T1M, T1I;
			      TW = W[7];
			      T1M = FNMS(T1G, T1E, T1L);
			      T1I = FMA(T1G, T1H, T1F);
			      TT = W[6];
			      T15 = TW * TU;
			      Im[WS(rs, 3)] = T1M - T1K;
			      Ip[WS(rs, 3)] = T1K + T1M;
			      Rm[WS(rs, 3)] = T1C + T1I;
			      Rp[WS(rs, 3)] = T1C - T1I;
			      TV = TT * TU;
			      TZ = W[8];
			      TY = FNMS(TW, TX, TV);
			      T16 = FMA(TT, TX, T15);
			      T12 = W[9];
			      T17 = TZ * T13;
			      T11 = TZ * T10;
			 }
			 {
			      E T1e, T19, T1t, T1d, T1j, T18, T14;
			      T1e = W[3];
			      T18 = FNMS(T12, T10, T17);
			      T14 = FMA(T12, T13, T11);
			      T19 = W[2];
			      T1t = T1e * T1c;
			      Im[WS(rs, 2)] = T18 - T16;
			      Ip[WS(rs, 2)] = T16 + T18;
			      Rm[WS(rs, 2)] = TY + T14;
			      Rp[WS(rs, 2)] = TY - T14;
			      T1d = T19 * T1c;
			      T1j = W[4];
			      T1i = FNMS(T1e, T1h, T1d);
			      T1u = FMA(T19, T1h, T1t);
			      T1o = W[5];
			      T1v = T1j * T1r;
			      T1n = T1j * T1m;
			 }
		    }
	       }
	  }
	  T1w = FNMS(T1o, T1m, T1v);
	  T1s = FMA(T1o, T1r, T1n);
	  Im[WS(rs, 1)] = T1w - T1u;
	  Ip[WS(rs, 1)] = T1u + T1w;
	  Rm[WS(rs, 1)] = T1i + T1s;
	  Rp[WS(rs, 1)] = T1i - T1s;
     }
}

static const tw_instr twinstr[] = {
     {TW_FULL, 1, 8},
     {TW_NEXT, 1, 0}
};

static const hc2c_desc desc = { 8, "hc2cbdft2_8", twinstr, &GENUS, {60, 14, 22, 0} };

void X(codelet_hc2cbdft2_8) (planner *p) {
     X(khc2c_register) (p, hc2cbdft2_8, &desc, HC2C_VIA_DFT);
}
#else				/* HAVE_FMA */

/* Generated by: ../../../genfft/gen_hc2cdft -compact -variables 4 -pipeline-latency 4 -sign 1 -n 8 -dif -name hc2cbdft2_8 -include hc2cb.h */

/*
 * This function contains 82 FP additions, 32 FP multiplications,
 * (or, 68 additions, 18 multiplications, 14 fused multiply/add),
 * 30 stack variables, 1 constants, and 32 memory accesses
 */
#include "hc2cb.h"

static void hc2cbdft2_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
     INT m;
     for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(rs)) {
	  E T7, T1d, T1h, Tl, TG, T14, T19, TO, Te, TL, T18, T15, TB, T1e, Tw;
	  E T1i;
	  {
	       E T3, TC, Tk, TM, T6, Th, TF, TN;
	       {
		    E T1, T2, Ti, Tj;
		    T1 = Rp[0];
		    T2 = Rm[WS(rs, 3)];
		    T3 = T1 + T2;
		    TC = T1 - T2;
		    Ti = Ip[0];
		    Tj = Im[WS(rs, 3)];
		    Tk = Ti + Tj;
		    TM = Ti - Tj;
	       }
	       {
		    E T4, T5, TD, TE;
		    T4 = Rp[WS(rs, 2)];
		    T5 = Rm[WS(rs, 1)];
		    T6 = T4 + T5;
		    Th = T4 - T5;
		    TD = Ip[WS(rs, 2)];
		    TE = Im[WS(rs, 1)];
		    TF = TD + TE;
		    TN = TD - TE;
	       }
	       T7 = T3 + T6;
	       T1d = Tk - Th;
	       T1h = TC + TF;
	       Tl = Th + Tk;
	       TG = TC - TF;
	       T14 = T3 - T6;
	       T19 = TM - TN;
	       TO = TM + TN;
	  }
	  {
	       E Ta, Tm, Tp, TJ, Td, Tr, Tu, TK;
	       {
		    E T8, T9, Tn, To;
		    T8 = Rp[WS(rs, 1)];
		    T9 = Rm[WS(rs, 2)];
		    Ta = T8 + T9;
		    Tm = T8 - T9;
		    Tn = Ip[WS(rs, 1)];
		    To = Im[WS(rs, 2)];
		    Tp = Tn + To;
		    TJ = Tn - To;
	       }
	       {
		    E Tb, Tc, Ts, Tt;
		    Tb = Rm[0];
		    Tc = Rp[WS(rs, 3)];
		    Td = Tb + Tc;
		    Tr = Tb - Tc;
		    Ts = Im[0];
		    Tt = Ip[WS(rs, 3)];
		    Tu = Ts + Tt;
		    TK = Tt - Ts;
	       }
	       Te = Ta + Td;
	       TL = TJ + TK;
	       T18 = Ta - Td;
	       T15 = TK - TJ;
	       {
		    E Tz, TA, Tq, Tv;
		    Tz = Tm - Tp;
		    TA = Tr - Tu;
		    TB = KP707106781 * (Tz + TA);
		    T1e = KP707106781 * (Tz - TA);
		    Tq = Tm + Tp;
		    Tv = Tr + Tu;
		    Tw = KP707106781 * (Tq - Tv);
		    T1i = KP707106781 * (Tq + Tv);
	       }
	  }
	  {
	       E Tf, TP, TI, TQ;
	       Tf = T7 + Te;
	       TP = TL + TO;
	       {
		    E Tx, TH, Tg, Ty;
		    Tx = Tl + Tw;
		    TH = TB + TG;
		    Tg = W[0];
		    Ty = W[1];
		    TI = FMA(Tg, Tx, Ty * TH);
		    TQ = FNMS(Ty, Tx, Tg * TH);
	       }
	       Rp[0] = Tf - TI;
	       Ip[0] = TP + TQ;
	       Rm[0] = Tf + TI;
	       Im[0] = TQ - TP;
	  }
	  {
	       E T1r, T1x, T1w, T1y;
	       {
		    E T1o, T1q, T1n, T1p;
		    T1o = T14 - T15;
		    T1q = T19 - T18;
		    T1n = W[10];
		    T1p = W[11];
		    T1r = FNMS(T1p, T1q, T1n * T1o);
		    T1x = FMA(T1p, T1o, T1n * T1q);
	       }
	       {
		    E T1t, T1v, T1s, T1u;
		    T1t = T1d - T1e;
		    T1v = T1i + T1h;
		    T1s = W[12];
		    T1u = W[13];
		    T1w = FMA(T1s, T1t, T1u * T1v);
		    T1y = FNMS(T1u, T1t, T1s * T1v);
	       }
	       Rp[WS(rs, 3)] = T1r - T1w;
	       Ip[WS(rs, 3)] = T1x + T1y;
	       Rm[WS(rs, 3)] = T1r + T1w;
	       Im[WS(rs, 3)] = T1y - T1x;
	  }
	  {
	       E TV, T11, T10, T12;
	       {
		    E TS, TU, TR, TT;
		    TS = T7 - Te;
		    TU = TO - TL;
		    TR = W[6];
		    TT = W[7];
		    TV = FNMS(TT, TU, TR * TS);
		    T11 = FMA(TT, TS, TR * TU);
	       }
	       {
		    E TX, TZ, TW, TY;
		    TX = Tl - Tw;
		    TZ = TG - TB;
		    TW = W[8];
		    TY = W[9];
		    T10 = FMA(TW, TX, TY * TZ);
		    T12 = FNMS(TY, TX, TW * TZ);
	       }
	       Rp[WS(rs, 2)] = TV - T10;
	       Ip[WS(rs, 2)] = T11 + T12;
	       Rm[WS(rs, 2)] = TV + T10;
	       Im[WS(rs, 2)] = T12 - T11;
	  }
	  {
	       E T1b, T1l, T1k, T1m;
	       {
		    E T16, T1a, T13, T17;
		    T16 = T14 + T15;
		    T1a = T18 + T19;
		    T13 = W[2];
		    T17 = W[3];
		    T1b = FNMS(T17, T1a, T13 * T16);
		    T1l = FMA(T17, T16, T13 * T1a);
	       }
	       {
		    E T1f, T1j, T1c, T1g;
		    T1f = T1d + T1e;
		    T1j = T1h - T1i;
		    T1c = W[4];
		    T1g = W[5];
		    T1k = FMA(T1c, T1f, T1g * T1j);
		    T1m = FNMS(T1g, T1f, T1c * T1j);
	       }
	       Rp[WS(rs, 1)] = T1b - T1k;
	       Ip[WS(rs, 1)] = T1l + T1m;
	       Rm[WS(rs, 1)] = T1b + T1k;
	       Im[WS(rs, 1)] = T1m - T1l;
	  }
     }
}

static const tw_instr twinstr[] = {
     {TW_FULL, 1, 8},
     {TW_NEXT, 1, 0}
};

static const hc2c_desc desc = { 8, "hc2cbdft2_8", twinstr, &GENUS, {68, 18, 14, 0} };

void X(codelet_hc2cbdft2_8) (planner *p) {
     X(khc2c_register) (p, hc2cbdft2_8, &desc, HC2C_VIA_DFT);
}
#endif				/* HAVE_FMA */