view Lib/fftw-3.2.1/rdft/scalar/r2cb/.svn/text-base/hc2cbdft_20.c.svn-base @ 2:c649e493c30a

Removed a redundant cout<<
author Geogaddi\David <d.m.ronan@qmul.ac.uk>
date Thu, 09 Jul 2015 21:45:55 +0100
parents 25bf17994ef1
children
line wrap: on
line source
/*
 * Copyright (c) 2003, 2007-8 Matteo Frigo
 * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Mon Feb  9 19:56:15 EST 2009 */

#include "codelet-rdft.h"

#ifdef HAVE_FMA

/* Generated by: ../../../genfft/gen_hc2cdft -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -dif -name hc2cbdft_20 -include hc2cb.h */

/*
 * This function contains 286 FP additions, 148 FP multiplications,
 * (or, 176 additions, 38 multiplications, 110 fused multiply/add),
 * 122 stack variables, 4 constants, and 80 memory accesses
 */
#include "hc2cb.h"

static void hc2cbdft_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
     DK(KP618033988, +0.618033988749894848204586834365638117720309180);
     INT m;
     for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 38, MAKE_VOLATILE_STRIDE(rs)) {
	  E T5s, T5v, T5t, T5z, T5q, T5y, T5u, T5A, T5w;
	  {
	       E T3T, T27, T2o, T41, T2p, T40, TU, T15, T2Q, T1N, T2L, T1w, T59, T4n, T5e;
	       E T4A, T2m, T24, T2Z, T2h, T4J, T3P, T3Y, T3W, T2d, TJ, T3H, T2c, TD, T52;
	       E T3G, T1E, T4f, T5I, T4e, T4w, T5L, T4v, T1J, T1H;
	       {
		    E T1A, T3, T25, TI, TF, T6, T26, T1D, TO, T47, T3z, Te, T1S, T3M, T1e;
		    E T4k, TZ, T4a, T3C, Tt, T1Z, T3J, T1p, T4h, T14, T4b, T3D, TA, T22, T3K;
		    E T1u, T4i, Ti, T1f, Th, T1T, TS, Tj, T1g, T1h;
		    {
			 E T4, T5, T1B, T1C;
			 {
			      E T1, T2, TG, TH;
			      T1 = Rp[0];
			      T2 = Rm[WS(rs, 9)];
			      TG = Ip[0];
			      TH = Im[WS(rs, 9)];
			      T4 = Rp[WS(rs, 5)];
			      T1A = T1 - T2;
			      T3 = T1 + T2;
			      T25 = TG - TH;
			      TI = TG + TH;
			      T5 = Rm[WS(rs, 4)];
			      T1B = Ip[WS(rs, 5)];
			      T1C = Im[WS(rs, 4)];
			 }
			 {
			      E Tq, T1l, Tp, T1X, TY, Tr, T1m, T1n;
			      {
				   E Tb, T1a, Ta, T1Q, TN, Tc, T1b, T1c;
				   {
					E T8, T9, TL, TM;
					T8 = Rp[WS(rs, 4)];
					TF = T4 - T5;
					T6 = T4 + T5;
					T26 = T1B - T1C;
					T1D = T1B + T1C;
					T9 = Rm[WS(rs, 5)];
					TL = Ip[WS(rs, 4)];
					TM = Im[WS(rs, 5)];
					Tb = Rp[WS(rs, 9)];
					T1a = T8 - T9;
					Ta = T8 + T9;
					T1Q = TL - TM;
					TN = TL + TM;
					Tc = Rm[0];
					T1b = Ip[WS(rs, 9)];
					T1c = Im[0];
				   }
				   {
					E Tn, To, TW, TX;
					Tn = Rp[WS(rs, 8)];
					{
					     E TK, Td, T1R, T1d;
					     TK = Tb - Tc;
					     Td = Tb + Tc;
					     T1R = T1b - T1c;
					     T1d = T1b + T1c;
					     TO = TK + TN;
					     T47 = TN - TK;
					     T3z = Ta - Td;
					     Te = Ta + Td;
					     T1S = T1Q + T1R;
					     T3M = T1Q - T1R;
					     T1e = T1a - T1d;
					     T4k = T1a + T1d;
					     To = Rm[WS(rs, 1)];
					}
					TW = Ip[WS(rs, 8)];
					TX = Im[WS(rs, 1)];
					Tq = Rm[WS(rs, 6)];
					T1l = Tn - To;
					Tp = Tn + To;
					T1X = TW - TX;
					TY = TW + TX;
					Tr = Rp[WS(rs, 3)];
					T1m = Im[WS(rs, 6)];
					T1n = Ip[WS(rs, 3)];
				   }
			      }
			      {
				   E Tx, T1q, Tw, T20, T13, Ty, T1r, T1s;
				   {
					E Tu, Tv, T11, T12;
					Tu = Rm[WS(rs, 7)];
					{
					     E TV, Ts, T1Y, T1o;
					     TV = Tq - Tr;
					     Ts = Tq + Tr;
					     T1Y = T1n - T1m;
					     T1o = T1m + T1n;
					     TZ = TV + TY;
					     T4a = TY - TV;
					     T3C = Tp - Ts;
					     Tt = Tp + Ts;
					     T1Z = T1X + T1Y;
					     T3J = T1X - T1Y;
					     T1p = T1l + T1o;
					     T4h = T1l - T1o;
					     Tv = Rp[WS(rs, 2)];
					}
					T11 = Im[WS(rs, 7)];
					T12 = Ip[WS(rs, 2)];
					Tx = Rm[WS(rs, 2)];
					T1q = Tu - Tv;
					Tw = Tu + Tv;
					T20 = T12 - T11;
					T13 = T11 + T12;
					Ty = Rp[WS(rs, 7)];
					T1r = Im[WS(rs, 2)];
					T1s = Ip[WS(rs, 7)];
				   }
				   {
					E Tf, Tg, TQ, TR;
					Tf = Rm[WS(rs, 3)];
					{
					     E T10, Tz, T21, T1t;
					     T10 = Tx - Ty;
					     Tz = Tx + Ty;
					     T21 = T1s - T1r;
					     T1t = T1r + T1s;
					     T14 = T10 - T13;
					     T4b = T10 + T13;
					     T3D = Tw - Tz;
					     TA = Tw + Tz;
					     T22 = T20 + T21;
					     T3K = T20 - T21;
					     T1u = T1q + T1t;
					     T4i = T1q - T1t;
					     Tg = Rp[WS(rs, 6)];
					}
					TQ = Im[WS(rs, 3)];
					TR = Ip[WS(rs, 6)];
					Ti = Rp[WS(rs, 1)];
					T1f = Tf - Tg;
					Th = Tf + Tg;
					T1T = TR - TQ;
					TS = TQ + TR;
					Tj = Rm[WS(rs, 8)];
					T1g = Ip[WS(rs, 1)];
					T1h = Im[WS(rs, 8)];
				   }
			      }
			 }
		    }
		    {
			 E T1V, T3N, TB, T3B, Tm, T3E, T1F, T1G, T4t, T4j, T4m, T4s, T4c, T4y, T4z;
			 E T49, T3y, T7;
			 {
			      E TT, T48, T1j, T4l, T3A, Tl;
			      T3T = T25 - T26;
			      T27 = T25 + T26;
			      {
				   E TP, Tk, T1U, T1i;
				   TP = Ti - Tj;
				   Tk = Ti + Tj;
				   T1U = T1g - T1h;
				   T1i = T1g + T1h;
				   TT = TP - TS;
				   T48 = TP + TS;
				   T3A = Th - Tk;
				   Tl = Th + Tk;
				   T1V = T1T + T1U;
				   T3N = T1T - T1U;
				   T1j = T1f - T1i;
				   T4l = T1f + T1i;
				   T2o = Tt - TA;
				   TB = Tt + TA;
			      }
			      T41 = T3z - T3A;
			      T3B = T3z + T3A;
			      Tm = Te + Tl;
			      T2p = Te - Tl;
			      {
				   E T1L, T1M, T1k, T1v;
				   T40 = T3C - T3D;
				   T3E = T3C + T3D;
				   TU = TO + TT;
				   T1L = TO - TT;
				   T1M = TZ - T14;
				   T15 = TZ + T14;
				   T1F = T1e + T1j;
				   T1k = T1e - T1j;
				   T1v = T1p - T1u;
				   T1G = T1p + T1u;
				   T4t = T4h + T4i;
				   T4j = T4h - T4i;
				   T2Q = FNMS(KP618033988, T1L, T1M);
				   T1N = FMA(KP618033988, T1M, T1L);
				   T2L = FNMS(KP618033988, T1k, T1v);
				   T1w = FMA(KP618033988, T1v, T1k);
				   T4m = T4k - T4l;
				   T4s = T4k + T4l;
				   T4c = T4a - T4b;
				   T4y = T4a + T4b;
				   T4z = T47 + T48;
				   T49 = T47 - T48;
			      }
			 }
			 {
			      E T2g, T1W, T23, T2f;
			      T2g = T1S - T1V;
			      T1W = T1S + T1V;
			      T59 = FMA(KP618033988, T4j, T4m);
			      T4n = FNMS(KP618033988, T4m, T4j);
			      T5e = FMA(KP618033988, T4y, T4z);
			      T4A = FNMS(KP618033988, T4z, T4y);
			      T23 = T1Z + T22;
			      T2f = T1Z - T22;
			      {
				   E T3V, T3L, T3O, T3U;
				   T3V = T3J + T3K;
				   T3L = T3J - T3K;
				   T2m = T1W - T23;
				   T24 = T1W + T23;
				   T2Z = FMA(KP618033988, T2f, T2g);
				   T2h = FNMS(KP618033988, T2g, T2f);
				   T3O = T3M - T3N;
				   T3U = T3M + T3N;
				   T3y = T3 - T6;
				   T7 = T3 + T6;
				   T4J = FMA(KP618033988, T3L, T3O);
				   T3P = FNMS(KP618033988, T3O, T3L);
				   T3Y = T3U - T3V;
				   T3W = T3U + T3V;
			      }
			 }
			 {
			      E T46, TC, T3F, T4r, T4d, T4u;
			      TC = Tm + TB;
			      T2d = Tm - TB;
			      TJ = TF + TI;
			      T46 = TI - TF;
			      T3H = T3B - T3E;
			      T3F = T3B + T3E;
			      T2c = FNMS(KP250000000, TC, T7);
			      TD = T7 + TC;
			      T52 = T3y + T3F;
			      T3G = FNMS(KP250000000, T3F, T3y);
			      T4r = T1A + T1D;
			      T1E = T1A - T1D;
			      T4f = T49 - T4c;
			      T4d = T49 + T4c;
			      T5I = T46 + T4d;
			      T4e = FNMS(KP250000000, T4d, T46);
			      T4w = T4s - T4t;
			      T4u = T4s + T4t;
			      T5L = T4u + T4r;
			      T4v = FNMS(KP250000000, T4u, T4r);
			      T1J = T1F - T1G;
			      T1H = T1F + T1G;
			 }
		    }
	       }
	       {
		    E T38, T3b, T39, T3f, T36, T3e, T3a;
		    {
			 E T28, T3r, T3o, T3v, T3p, T2b, T2k, T35, T3l, T2H, T2r, T2j, T2z, T2D, T2G;
			 E T2X, T2F, T2T, T32, T3h, T3k, T31, T3d, T3j, T3t, T1x, T2u, T1O, T2x, T2v;
			 E T1y, T2B, T29, T2J, T2M, T2R, T2N, T2V;
			 {
			      E T2l, T1I, T18, T2q, T34, T17, T16, T3n;
			      T28 = T24 + T27;
			      T2l = FNMS(KP250000000, T24, T27);
			      T3r = T1H + T1E;
			      T1I = FNMS(KP250000000, T1H, T1E);
			      T18 = TU - T15;
			      T16 = TU + T15;
			      T3n = W[8];
			      T2q = FNMS(KP618033988, T2p, T2o);
			      T34 = FMA(KP618033988, T2o, T2p);
			      T17 = FNMS(KP250000000, T16, TJ);
			      T3o = TJ + T16;
			      T3v = T3n * T3r;
			      T3p = T3n * T3o;
			      {
				   E T2Y, T2E, T3i, T30;
				   {
					E T2e, T33, T2n, T2i;
					T2Y = FMA(KP559016994, T2d, T2c);
					T2e = FNMS(KP559016994, T2d, T2c);
					T2b = W[14];
					T2k = W[15];
					T33 = FMA(KP559016994, T2m, T2l);
					T2n = FNMS(KP559016994, T2m, T2l);
					T2E = FMA(KP951056516, T2h, T2e);
					T2i = FNMS(KP951056516, T2h, T2e);
					T35 = FMA(KP951056516, T34, T33);
					T3l = FNMS(KP951056516, T34, T33);
					T2H = FNMS(KP951056516, T2q, T2n);
					T2r = FMA(KP951056516, T2q, T2n);
					T2j = T2b * T2i;
					T2z = T2k * T2i;
					T2D = W[22];
					T2G = W[23];
				   }
				   T2X = W[30];
				   T2F = T2D * T2E;
				   T2T = T2G * T2E;
				   T3i = FMA(KP951056516, T2Z, T2Y);
				   T30 = FNMS(KP951056516, T2Z, T2Y);
				   T32 = W[31];
				   T3h = W[6];
				   T3k = W[7];
				   T31 = T2X * T30;
				   T3d = T32 * T30;
				   T3j = T3h * T3i;
				   T3t = T3k * T3i;
			      }
			      {
				   E T2K, T2P, TE, T19, T1K, T2t, T37;
				   T2K = FNMS(KP559016994, T18, T17);
				   T19 = FMA(KP559016994, T18, T17);
				   T1K = FMA(KP559016994, T1J, T1I);
				   T2P = FNMS(KP559016994, T1J, T1I);
				   TE = W[0];
				   T2t = W[16];
				   T1x = FMA(KP951056516, T1w, T19);
				   T2u = FNMS(KP951056516, T1w, T19);
				   T1O = FNMS(KP951056516, T1N, T1K);
				   T2x = FMA(KP951056516, T1N, T1K);
				   T2v = T2t * T2u;
				   T1y = TE * T1x;
				   T2B = T2t * T2x;
				   T29 = TE * T1O;
				   T2J = W[24];
				   T37 = W[32];
				   T2M = FMA(KP951056516, T2L, T2K);
				   T38 = FNMS(KP951056516, T2L, T2K);
				   T2R = FNMS(KP951056516, T2Q, T2P);
				   T3b = FMA(KP951056516, T2Q, T2P);
				   T39 = T37 * T38;
				   T2N = T2J * T2M;
				   T3f = T37 * T3b;
			      }
			 }
			 T2V = T2J * T2R;
			 {
			      E T3m, T3u, T3q, T2a, T1P, T1z;
			      T1z = W[1];
			      T3m = FNMS(T3k, T3l, T3j);
			      T3u = FMA(T3h, T3l, T3t);
			      T3q = W[9];
			      T2a = FNMS(T1z, T1x, T29);
			      T1P = FMA(T1z, T1O, T1y);
			      {
				   E T2s, T2A, T2w, T3w, T3s;
				   T2s = FNMS(T2k, T2r, T2j);
				   T3w = FNMS(T3q, T3o, T3v);
				   T3s = FMA(T3q, T3r, T3p);
				   Im[0] = T2a - T28;
				   Ip[0] = T28 + T2a;
				   Rm[0] = TD + T1P;
				   Rp[0] = TD - T1P;
				   Im[WS(rs, 2)] = T3w - T3u;
				   Ip[WS(rs, 2)] = T3u + T3w;
				   Rm[WS(rs, 2)] = T3m + T3s;
				   Rp[WS(rs, 2)] = T3m - T3s;
				   T2A = FMA(T2b, T2r, T2z);
				   T2w = W[17];
				   {
					E T2I, T2U, T2O, T2C, T2y, T2W, T2S;
					T2I = FNMS(T2G, T2H, T2F);
					T2U = FMA(T2D, T2H, T2T);
					T2O = W[25];
					T2C = FNMS(T2w, T2u, T2B);
					T2y = FMA(T2w, T2x, T2v);
					T36 = FNMS(T32, T35, T31);
					T2W = FNMS(T2O, T2M, T2V);
					T2S = FMA(T2O, T2R, T2N);
					Im[WS(rs, 4)] = T2C - T2A;
					Ip[WS(rs, 4)] = T2A + T2C;
					Rm[WS(rs, 4)] = T2s + T2y;
					Rp[WS(rs, 4)] = T2s - T2y;
					Im[WS(rs, 6)] = T2W - T2U;
					Ip[WS(rs, 6)] = T2U + T2W;
					Rm[WS(rs, 6)] = T2I + T2S;
					Rp[WS(rs, 6)] = T2I - T2S;
					T3e = FMA(T2X, T35, T3d);
					T3a = W[33];
				   }
			      }
			 }
		    }
		    {
			 E T55, T51, T54, T53, T5h, T5P, T5J, T3x, T4P, T5F, T5p, T43, T3R, T3S, T5l;
			 E T5o, T4D, T5n, T5x, T4H, T4M, T5B, T5E, T4L, T4X, T5D, T5N, T4S, T4o, T4V;
			 E T4B, T4T, T4p, T4Z, T4F, T57, T5a, T5f, T5b, T5j;
			 {
			      E T3X, T4O, T42, T3g, T3c, T5H;
			      T55 = T3W + T3T;
			      T3X = FNMS(KP250000000, T3W, T3T);
			      T51 = W[18];
			      T3g = FNMS(T3a, T38, T3f);
			      T3c = FMA(T3a, T3b, T39);
			      T54 = W[19];
			      T53 = T51 * T52;
			      Im[WS(rs, 8)] = T3g - T3e;
			      Ip[WS(rs, 8)] = T3e + T3g;
			      Rm[WS(rs, 8)] = T36 + T3c;
			      Rp[WS(rs, 8)] = T36 - T3c;
			      T5h = T54 * T52;
			      T5H = W[28];
			      T4O = FMA(KP618033988, T40, T41);
			      T42 = FNMS(KP618033988, T41, T40);
			      T5P = T5H * T5L;
			      T5J = T5H * T5I;
			      {
				   E T4I, T5m, T3Q, T3I, T3Z, T4N, T4K, T5C;
				   T3I = FNMS(KP559016994, T3H, T3G);
				   T4I = FMA(KP559016994, T3H, T3G);
				   T3Z = FNMS(KP559016994, T3Y, T3X);
				   T4N = FMA(KP559016994, T3Y, T3X);
				   T3x = W[2];
				   T5m = FNMS(KP951056516, T3P, T3I);
				   T3Q = FMA(KP951056516, T3P, T3I);
				   T4P = FMA(KP951056516, T4O, T4N);
				   T5F = FNMS(KP951056516, T4O, T4N);
				   T5p = FMA(KP951056516, T42, T3Z);
				   T43 = FNMS(KP951056516, T42, T3Z);
				   T3R = T3x * T3Q;
				   T3S = W[3];
				   T5l = W[34];
				   T5o = W[35];
				   T4D = T3S * T3Q;
				   T5n = T5l * T5m;
				   T5x = T5o * T5m;
				   T4K = FNMS(KP951056516, T4J, T4I);
				   T5C = FMA(KP951056516, T4J, T4I);
				   T4H = W[10];
				   T4M = W[11];
				   T5B = W[26];
				   T5E = W[27];
				   T4L = T4H * T4K;
				   T4X = T4M * T4K;
				   T5D = T5B * T5C;
				   T5N = T5E * T5C;
			      }
			      {
				   E T58, T5d, T45, T4g, T4x, T4R, T5r;
				   T4g = FNMS(KP559016994, T4f, T4e);
				   T58 = FMA(KP559016994, T4f, T4e);
				   T5d = FMA(KP559016994, T4w, T4v);
				   T4x = FNMS(KP559016994, T4w, T4v);
				   T45 = W[4];
				   T4R = W[12];
				   T4S = FNMS(KP951056516, T4n, T4g);
				   T4o = FMA(KP951056516, T4n, T4g);
				   T4V = FMA(KP951056516, T4A, T4x);
				   T4B = FNMS(KP951056516, T4A, T4x);
				   T4T = T4R * T4S;
				   T4p = T45 * T4o;
				   T4Z = T4R * T4V;
				   T4F = T45 * T4B;
				   T57 = W[20];
				   T5r = W[36];
				   T5s = FNMS(KP951056516, T59, T58);
				   T5a = FMA(KP951056516, T59, T58);
				   T5v = FMA(KP951056516, T5e, T5d);
				   T5f = FNMS(KP951056516, T5e, T5d);
				   T5t = T5r * T5s;
				   T5b = T57 * T5a;
				   T5z = T5r * T5v;
			      }
			 }
			 T5j = T57 * T5f;
			 {
			      E T44, T4E, T5G, T5O, T5K, T4G, T4C, T4q;
			      T44 = FNMS(T3S, T43, T3R);
			      T4E = FMA(T3x, T43, T4D);
			      T4q = W[5];
			      T5G = FNMS(T5E, T5F, T5D);
			      T5O = FMA(T5B, T5F, T5N);
			      T5K = W[29];
			      T4G = FNMS(T4q, T4o, T4F);
			      T4C = FMA(T4q, T4B, T4p);
			      {
				   E T4Q, T4Y, T4U, T5Q, T5M;
				   T4Q = FNMS(T4M, T4P, T4L);
				   T5Q = FNMS(T5K, T5I, T5P);
				   T5M = FMA(T5K, T5L, T5J);
				   Im[WS(rs, 1)] = T4G - T4E;
				   Ip[WS(rs, 1)] = T4E + T4G;
				   Rm[WS(rs, 1)] = T44 + T4C;
				   Rp[WS(rs, 1)] = T44 - T4C;
				   Im[WS(rs, 7)] = T5Q - T5O;
				   Ip[WS(rs, 7)] = T5O + T5Q;
				   Rm[WS(rs, 7)] = T5G + T5M;
				   Rp[WS(rs, 7)] = T5G - T5M;
				   T4Y = FMA(T4H, T4P, T4X);
				   T4U = W[13];
				   {
					E T56, T5i, T5c, T50, T4W, T5k, T5g;
					T56 = FNMS(T54, T55, T53);
					T5i = FMA(T51, T55, T5h);
					T5c = W[21];
					T50 = FNMS(T4U, T4S, T4Z);
					T4W = FMA(T4U, T4V, T4T);
					T5q = FNMS(T5o, T5p, T5n);
					T5k = FNMS(T5c, T5a, T5j);
					T5g = FMA(T5c, T5f, T5b);
					Im[WS(rs, 3)] = T50 - T4Y;
					Ip[WS(rs, 3)] = T4Y + T50;
					Rm[WS(rs, 3)] = T4Q + T4W;
					Rp[WS(rs, 3)] = T4Q - T4W;
					Im[WS(rs, 5)] = T5k - T5i;
					Ip[WS(rs, 5)] = T5i + T5k;
					Rm[WS(rs, 5)] = T56 + T5g;
					Rp[WS(rs, 5)] = T56 - T5g;
					T5y = FMA(T5l, T5p, T5x);
					T5u = W[37];
				   }
			      }
			 }
		    }
	       }
	  }
	  T5A = FNMS(T5u, T5s, T5z);
	  T5w = FMA(T5u, T5v, T5t);
	  Im[WS(rs, 9)] = T5A - T5y;
	  Ip[WS(rs, 9)] = T5y + T5A;
	  Rm[WS(rs, 9)] = T5q + T5w;
	  Rp[WS(rs, 9)] = T5q - T5w;
     }
}

static const tw_instr twinstr[] = {
     {TW_FULL, 1, 20},
     {TW_NEXT, 1, 0}
};

static const hc2c_desc desc = { 20, "hc2cbdft_20", twinstr, &GENUS, {176, 38, 110, 0} };

void X(codelet_hc2cbdft_20) (planner *p) {
     X(khc2c_register) (p, hc2cbdft_20, &desc, HC2C_VIA_DFT);
}
#else				/* HAVE_FMA */

/* Generated by: ../../../genfft/gen_hc2cdft -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -dif -name hc2cbdft_20 -include hc2cb.h */

/*
 * This function contains 286 FP additions, 124 FP multiplications,
 * (or, 224 additions, 62 multiplications, 62 fused multiply/add),
 * 89 stack variables, 4 constants, and 80 memory accesses
 */
#include "hc2cb.h"

static void hc2cbdft_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
     DK(KP587785252, +0.587785252292473129168705954639072768597652438);
     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
     INT m;
     for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 38, MAKE_VOLATILE_STRIDE(rs)) {
	  E T7, T3N, T4a, T16, T1G, T3g, T3D, T26, T1k, T3A, T3B, T1v, T2e, T48, T47;
	  E T2d, T1L, T43, T40, T1K, T2l, T3t, T2m, T3w, T3n, T3p, TC, T2b, T4d, T4f;
	  E T23, T2j, T1B, T1H, T3U, T3W, T3G, T3I, T11, T17;
	  {
	       E T3, T1C, T15, T24, T6, T12, T1F, T25;
	       {
		    E T1, T2, T13, T14;
		    T1 = Rp[0];
		    T2 = Rm[WS(rs, 9)];
		    T3 = T1 + T2;
		    T1C = T1 - T2;
		    T13 = Ip[0];
		    T14 = Im[WS(rs, 9)];
		    T15 = T13 + T14;
		    T24 = T13 - T14;
	       }
	       {
		    E T4, T5, T1D, T1E;
		    T4 = Rp[WS(rs, 5)];
		    T5 = Rm[WS(rs, 4)];
		    T6 = T4 + T5;
		    T12 = T4 - T5;
		    T1D = Ip[WS(rs, 5)];
		    T1E = Im[WS(rs, 4)];
		    T1F = T1D + T1E;
		    T25 = T1D - T1E;
	       }
	       T7 = T3 + T6;
	       T3N = T15 - T12;
	       T4a = T1C + T1F;
	       T16 = T12 + T15;
	       T1G = T1C - T1F;
	       T3g = T3 - T6;
	       T3D = T24 - T25;
	       T26 = T24 + T25;
	  }
	  {
	       E Te, T3O, T3Y, TJ, T1e, T3h, T3r, T1R, TA, T3S, T42, TZ, T1u, T3l, T3v;
	       E T21, Tl, T3P, T3Z, TO, T1j, T3i, T3s, T1U, Tt, T3R, T41, TU, T1p, T3k;
	       E T3u, T1Y;
	       {
		    E Ta, T1a, TI, T1P, Td, TF, T1d, T1Q;
		    {
			 E T8, T9, TG, TH;
			 T8 = Rp[WS(rs, 4)];
			 T9 = Rm[WS(rs, 5)];
			 Ta = T8 + T9;
			 T1a = T8 - T9;
			 TG = Ip[WS(rs, 4)];
			 TH = Im[WS(rs, 5)];
			 TI = TG + TH;
			 T1P = TG - TH;
		    }
		    {
			 E Tb, Tc, T1b, T1c;
			 Tb = Rp[WS(rs, 9)];
			 Tc = Rm[0];
			 Td = Tb + Tc;
			 TF = Tb - Tc;
			 T1b = Ip[WS(rs, 9)];
			 T1c = Im[0];
			 T1d = T1b + T1c;
			 T1Q = T1b - T1c;
		    }
		    Te = Ta + Td;
		    T3O = TI - TF;
		    T3Y = T1a + T1d;
		    TJ = TF + TI;
		    T1e = T1a - T1d;
		    T3h = Ta - Td;
		    T3r = T1P - T1Q;
		    T1R = T1P + T1Q;
	       }
	       {
		    E Tw, T1q, TY, T1Z, Tz, TV, T1t, T20;
		    {
			 E Tu, Tv, TW, TX;
			 Tu = Rm[WS(rs, 7)];
			 Tv = Rp[WS(rs, 2)];
			 Tw = Tu + Tv;
			 T1q = Tu - Tv;
			 TW = Im[WS(rs, 7)];
			 TX = Ip[WS(rs, 2)];
			 TY = TW + TX;
			 T1Z = TX - TW;
		    }
		    {
			 E Tx, Ty, T1r, T1s;
			 Tx = Rm[WS(rs, 2)];
			 Ty = Rp[WS(rs, 7)];
			 Tz = Tx + Ty;
			 TV = Tx - Ty;
			 T1r = Im[WS(rs, 2)];
			 T1s = Ip[WS(rs, 7)];
			 T1t = T1r + T1s;
			 T20 = T1s - T1r;
		    }
		    TA = Tw + Tz;
		    T3S = TV + TY;
		    T42 = T1q - T1t;
		    TZ = TV - TY;
		    T1u = T1q + T1t;
		    T3l = Tw - Tz;
		    T3v = T1Z - T20;
		    T21 = T1Z + T20;
	       }
	       {
		    E Th, T1f, TN, T1S, Tk, TK, T1i, T1T;
		    {
			 E Tf, Tg, TL, TM;
			 Tf = Rm[WS(rs, 3)];
			 Tg = Rp[WS(rs, 6)];
			 Th = Tf + Tg;
			 T1f = Tf - Tg;
			 TL = Im[WS(rs, 3)];
			 TM = Ip[WS(rs, 6)];
			 TN = TL + TM;
			 T1S = TM - TL;
		    }
		    {
			 E Ti, Tj, T1g, T1h;
			 Ti = Rp[WS(rs, 1)];
			 Tj = Rm[WS(rs, 8)];
			 Tk = Ti + Tj;
			 TK = Ti - Tj;
			 T1g = Ip[WS(rs, 1)];
			 T1h = Im[WS(rs, 8)];
			 T1i = T1g + T1h;
			 T1T = T1g - T1h;
		    }
		    Tl = Th + Tk;
		    T3P = TK + TN;
		    T3Z = T1f + T1i;
		    TO = TK - TN;
		    T1j = T1f - T1i;
		    T3i = Th - Tk;
		    T3s = T1S - T1T;
		    T1U = T1S + T1T;
	       }
	       {
		    E Tp, T1l, TT, T1W, Ts, TQ, T1o, T1X;
		    {
			 E Tn, To, TR, TS;
			 Tn = Rp[WS(rs, 8)];
			 To = Rm[WS(rs, 1)];
			 Tp = Tn + To;
			 T1l = Tn - To;
			 TR = Ip[WS(rs, 8)];
			 TS = Im[WS(rs, 1)];
			 TT = TR + TS;
			 T1W = TR - TS;
		    }
		    {
			 E Tq, Tr, T1m, T1n;
			 Tq = Rm[WS(rs, 6)];
			 Tr = Rp[WS(rs, 3)];
			 Ts = Tq + Tr;
			 TQ = Tq - Tr;
			 T1m = Im[WS(rs, 6)];
			 T1n = Ip[WS(rs, 3)];
			 T1o = T1m + T1n;
			 T1X = T1n - T1m;
		    }
		    Tt = Tp + Ts;
		    T3R = TT - TQ;
		    T41 = T1l - T1o;
		    TU = TQ + TT;
		    T1p = T1l + T1o;
		    T3k = Tp - Ts;
		    T3u = T1W - T1X;
		    T1Y = T1W + T1X;
	       }
	       T1k = T1e - T1j;
	       T3A = T3h - T3i;
	       T3B = T3k - T3l;
	       T1v = T1p - T1u;
	       T2e = T1Y - T21;
	       T48 = T3R + T3S;
	       T47 = T3O + T3P;
	       T2d = T1R - T1U;
	       T1L = TU - TZ;
	       T43 = T41 - T42;
	       T40 = T3Y - T3Z;
	       T1K = TJ - TO;
	       T2l = Te - Tl;
	       T3t = T3r - T3s;
	       T2m = Tt - TA;
	       T3w = T3u - T3v;
	       {
		    E T3j, T3m, Tm, TB;
		    T3j = T3h + T3i;
		    T3m = T3k + T3l;
		    T3n = T3j + T3m;
		    T3p = KP559016994 * (T3j - T3m);
		    Tm = Te + Tl;
		    TB = Tt + TA;
		    TC = Tm + TB;
		    T2b = KP559016994 * (Tm - TB);
	       }
	       {
		    E T4b, T4c, T3Q, T3T;
		    T4b = T3Y + T3Z;
		    T4c = T41 + T42;
		    T4d = T4b + T4c;
		    T4f = KP559016994 * (T4b - T4c);
		    {
			 E T1V, T22, T1z, T1A;
			 T1V = T1R + T1U;
			 T22 = T1Y + T21;
			 T23 = T1V + T22;
			 T2j = KP559016994 * (T1V - T22);
			 T1z = T1e + T1j;
			 T1A = T1p + T1u;
			 T1B = KP559016994 * (T1z - T1A);
			 T1H = T1z + T1A;
		    }
		    T3Q = T3O - T3P;
		    T3T = T3R - T3S;
		    T3U = T3Q + T3T;
		    T3W = KP559016994 * (T3Q - T3T);
		    {
			 E T3E, T3F, TP, T10;
			 T3E = T3r + T3s;
			 T3F = T3u + T3v;
			 T3G = T3E + T3F;
			 T3I = KP559016994 * (T3E - T3F);
			 TP = TJ + TO;
			 T10 = TU + TZ;
			 T11 = KP559016994 * (TP - T10);
			 T17 = TP + T10;
		    }
	       }
	  }
	  {
	       E TD, T27, T3c, T3e, T2o, T36, T2A, T2U, T1N, T2Z, T2t, T2J, T1x, T2X, T2r;
	       E T2F, T2g, T34, T2y, T2Q;
	       TD = T7 + TC;
	       T27 = T23 + T26;
	       {
		    E T39, T3b, T38, T3a;
		    T39 = T16 + T17;
		    T3b = T1H + T1G;
		    T38 = W[8];
		    T3a = W[9];
		    T3c = FMA(T38, T39, T3a * T3b);
		    T3e = FNMS(T3a, T39, T38 * T3b);
	       }
	       {
		    E T2n, T2S, T2k, T2T, T2i;
		    T2n = FNMS(KP951056516, T2m, KP587785252 * T2l);
		    T2S = FMA(KP951056516, T2l, KP587785252 * T2m);
		    T2i = FNMS(KP250000000, T23, T26);
		    T2k = T2i - T2j;
		    T2T = T2j + T2i;
		    T2o = T2k - T2n;
		    T36 = T2T - T2S;
		    T2A = T2n + T2k;
		    T2U = T2S + T2T;
	       }
	       {
		    E T1M, T2H, T1J, T2I, T1I;
		    T1M = FMA(KP951056516, T1K, KP587785252 * T1L);
		    T2H = FNMS(KP951056516, T1L, KP587785252 * T1K);
		    T1I = FNMS(KP250000000, T1H, T1G);
		    T1J = T1B + T1I;
		    T2I = T1I - T1B;
		    T1N = T1J - T1M;
		    T2Z = T2I - T2H;
		    T2t = T1M + T1J;
		    T2J = T2H + T2I;
	       }
	       {
		    E T1w, T2E, T19, T2D, T18;
		    T1w = FMA(KP951056516, T1k, KP587785252 * T1v);
		    T2E = FNMS(KP951056516, T1v, KP587785252 * T1k);
		    T18 = FNMS(KP250000000, T17, T16);
		    T19 = T11 + T18;
		    T2D = T18 - T11;
		    T1x = T19 + T1w;
		    T2X = T2D + T2E;
		    T2r = T19 - T1w;
		    T2F = T2D - T2E;
	       }
	       {
		    E T2f, T2P, T2c, T2O, T2a;
		    T2f = FNMS(KP951056516, T2e, KP587785252 * T2d);
		    T2P = FMA(KP951056516, T2d, KP587785252 * T2e);
		    T2a = FNMS(KP250000000, TC, T7);
		    T2c = T2a - T2b;
		    T2O = T2b + T2a;
		    T2g = T2c + T2f;
		    T34 = T2O + T2P;
		    T2y = T2c - T2f;
		    T2Q = T2O - T2P;
	       }
	       {
		    E T1O, T28, TE, T1y;
		    TE = W[0];
		    T1y = W[1];
		    T1O = FMA(TE, T1x, T1y * T1N);
		    T28 = FNMS(T1y, T1x, TE * T1N);
		    Rp[0] = TD - T1O;
		    Ip[0] = T27 + T28;
		    Rm[0] = TD + T1O;
		    Im[0] = T28 - T27;
	       }
	       {
		    E T37, T3d, T33, T35;
		    T33 = W[6];
		    T35 = W[7];
		    T37 = FNMS(T35, T36, T33 * T34);
		    T3d = FMA(T35, T34, T33 * T36);
		    Rp[WS(rs, 2)] = T37 - T3c;
		    Ip[WS(rs, 2)] = T3d + T3e;
		    Rm[WS(rs, 2)] = T37 + T3c;
		    Im[WS(rs, 2)] = T3e - T3d;
	       }
	       {
		    E T2p, T2v, T2u, T2w;
		    {
			 E T29, T2h, T2q, T2s;
			 T29 = W[14];
			 T2h = W[15];
			 T2p = FNMS(T2h, T2o, T29 * T2g);
			 T2v = FMA(T2h, T2g, T29 * T2o);
			 T2q = W[16];
			 T2s = W[17];
			 T2u = FMA(T2q, T2r, T2s * T2t);
			 T2w = FNMS(T2s, T2r, T2q * T2t);
		    }
		    Rp[WS(rs, 4)] = T2p - T2u;
		    Ip[WS(rs, 4)] = T2v + T2w;
		    Rm[WS(rs, 4)] = T2p + T2u;
		    Im[WS(rs, 4)] = T2w - T2v;
	       }
	       {
		    E T2B, T2L, T2K, T2M;
		    {
			 E T2x, T2z, T2C, T2G;
			 T2x = W[22];
			 T2z = W[23];
			 T2B = FNMS(T2z, T2A, T2x * T2y);
			 T2L = FMA(T2z, T2y, T2x * T2A);
			 T2C = W[24];
			 T2G = W[25];
			 T2K = FMA(T2C, T2F, T2G * T2J);
			 T2M = FNMS(T2G, T2F, T2C * T2J);
		    }
		    Rp[WS(rs, 6)] = T2B - T2K;
		    Ip[WS(rs, 6)] = T2L + T2M;
		    Rm[WS(rs, 6)] = T2B + T2K;
		    Im[WS(rs, 6)] = T2M - T2L;
	       }
	       {
		    E T2V, T31, T30, T32;
		    {
			 E T2N, T2R, T2W, T2Y;
			 T2N = W[30];
			 T2R = W[31];
			 T2V = FNMS(T2R, T2U, T2N * T2Q);
			 T31 = FMA(T2R, T2Q, T2N * T2U);
			 T2W = W[32];
			 T2Y = W[33];
			 T30 = FMA(T2W, T2X, T2Y * T2Z);
			 T32 = FNMS(T2Y, T2X, T2W * T2Z);
		    }
		    Rp[WS(rs, 8)] = T2V - T30;
		    Ip[WS(rs, 8)] = T31 + T32;
		    Rm[WS(rs, 8)] = T2V + T30;
		    Im[WS(rs, 8)] = T32 - T31;
	       }
	  }
	  {
	       E T4F, T4P, T5c, T5e, T3y, T54, T4o, T4S, T4h, T4Z, T4x, T4N, T45, T4X, T4v;
	       E T4J, T3K, T56, T4s, T4U;
	       {
		    E T4C, T4E, T4B, T4D;
		    T4C = T3g + T3n;
		    T4E = T3G + T3D;
		    T4B = W[18];
		    T4D = W[19];
		    T4F = FNMS(T4D, T4E, T4B * T4C);
		    T4P = FMA(T4D, T4C, T4B * T4E);
	       }
	       {
		    E T59, T5b, T58, T5a;
		    T59 = T3N + T3U;
		    T5b = T4d + T4a;
		    T58 = W[28];
		    T5a = W[29];
		    T5c = FMA(T58, T59, T5a * T5b);
		    T5e = FNMS(T5a, T59, T58 * T5b);
	       }
	       {
		    E T3x, T4n, T3q, T4m, T3o;
		    T3x = FNMS(KP951056516, T3w, KP587785252 * T3t);
		    T4n = FMA(KP951056516, T3t, KP587785252 * T3w);
		    T3o = FNMS(KP250000000, T3n, T3g);
		    T3q = T3o - T3p;
		    T4m = T3p + T3o;
		    T3y = T3q - T3x;
		    T54 = T4m + T4n;
		    T4o = T4m - T4n;
		    T4S = T3q + T3x;
	       }
	       {
		    E T49, T4M, T4g, T4L, T4e;
		    T49 = FNMS(KP951056516, T48, KP587785252 * T47);
		    T4M = FMA(KP951056516, T47, KP587785252 * T48);
		    T4e = FNMS(KP250000000, T4d, T4a);
		    T4g = T4e - T4f;
		    T4L = T4f + T4e;
		    T4h = T49 + T4g;
		    T4Z = T4M + T4L;
		    T4x = T4g - T49;
		    T4N = T4L - T4M;
	       }
	       {
		    E T44, T4I, T3X, T4H, T3V;
		    T44 = FNMS(KP951056516, T43, KP587785252 * T40);
		    T4I = FMA(KP951056516, T40, KP587785252 * T43);
		    T3V = FNMS(KP250000000, T3U, T3N);
		    T3X = T3V - T3W;
		    T4H = T3W + T3V;
		    T45 = T3X - T44;
		    T4X = T4H - T4I;
		    T4v = T3X + T44;
		    T4J = T4H + T4I;
	       }
	       {
		    E T3C, T4q, T3J, T4r, T3H;
		    T3C = FNMS(KP951056516, T3B, KP587785252 * T3A);
		    T4q = FMA(KP951056516, T3A, KP587785252 * T3B);
		    T3H = FNMS(KP250000000, T3G, T3D);
		    T3J = T3H - T3I;
		    T4r = T3I + T3H;
		    T3K = T3C + T3J;
		    T56 = T4r - T4q;
		    T4s = T4q + T4r;
		    T4U = T3J - T3C;
	       }
	       {
		    E T4O, T4Q, T4G, T4K;
		    T4G = W[20];
		    T4K = W[21];
		    T4O = FMA(T4G, T4J, T4K * T4N);
		    T4Q = FNMS(T4K, T4J, T4G * T4N);
		    Rp[WS(rs, 5)] = T4F - T4O;
		    Ip[WS(rs, 5)] = T4P + T4Q;
		    Rm[WS(rs, 5)] = T4F + T4O;
		    Im[WS(rs, 5)] = T4Q - T4P;
	       }
	       {
		    E T57, T5d, T53, T55;
		    T53 = W[26];
		    T55 = W[27];
		    T57 = FNMS(T55, T56, T53 * T54);
		    T5d = FMA(T55, T54, T53 * T56);
		    Rp[WS(rs, 7)] = T57 - T5c;
		    Ip[WS(rs, 7)] = T5d + T5e;
		    Rm[WS(rs, 7)] = T57 + T5c;
		    Im[WS(rs, 7)] = T5e - T5d;
	       }
	       {
		    E T3L, T4j, T4i, T4k;
		    {
			 E T3f, T3z, T3M, T46;
			 T3f = W[2];
			 T3z = W[3];
			 T3L = FNMS(T3z, T3K, T3f * T3y);
			 T4j = FMA(T3z, T3y, T3f * T3K);
			 T3M = W[4];
			 T46 = W[5];
			 T4i = FMA(T3M, T45, T46 * T4h);
			 T4k = FNMS(T46, T45, T3M * T4h);
		    }
		    Rp[WS(rs, 1)] = T3L - T4i;
		    Ip[WS(rs, 1)] = T4j + T4k;
		    Rm[WS(rs, 1)] = T3L + T4i;
		    Im[WS(rs, 1)] = T4k - T4j;
	       }
	       {
		    E T4t, T4z, T4y, T4A;
		    {
			 E T4l, T4p, T4u, T4w;
			 T4l = W[10];
			 T4p = W[11];
			 T4t = FNMS(T4p, T4s, T4l * T4o);
			 T4z = FMA(T4p, T4o, T4l * T4s);
			 T4u = W[12];
			 T4w = W[13];
			 T4y = FMA(T4u, T4v, T4w * T4x);
			 T4A = FNMS(T4w, T4v, T4u * T4x);
		    }
		    Rp[WS(rs, 3)] = T4t - T4y;
		    Ip[WS(rs, 3)] = T4z + T4A;
		    Rm[WS(rs, 3)] = T4t + T4y;
		    Im[WS(rs, 3)] = T4A - T4z;
	       }
	       {
		    E T4V, T51, T50, T52;
		    {
			 E T4R, T4T, T4W, T4Y;
			 T4R = W[34];
			 T4T = W[35];
			 T4V = FNMS(T4T, T4U, T4R * T4S);
			 T51 = FMA(T4T, T4S, T4R * T4U);
			 T4W = W[36];
			 T4Y = W[37];
			 T50 = FMA(T4W, T4X, T4Y * T4Z);
			 T52 = FNMS(T4Y, T4X, T4W * T4Z);
		    }
		    Rp[WS(rs, 9)] = T4V - T50;
		    Ip[WS(rs, 9)] = T51 + T52;
		    Rm[WS(rs, 9)] = T4V + T50;
		    Im[WS(rs, 9)] = T52 - T51;
	       }
	  }
     }
}

static const tw_instr twinstr[] = {
     {TW_FULL, 1, 20},
     {TW_NEXT, 1, 0}
};

static const hc2c_desc desc = { 20, "hc2cbdft_20", twinstr, &GENUS, {224, 62, 62, 0} };

void X(codelet_hc2cbdft_20) (planner *p) {
     X(khc2c_register) (p, hc2cbdft_20, &desc, HC2C_VIA_DFT);
}
#endif				/* HAVE_FMA */