view Lib/fftw-3.2.1/rdft/scalar/r2cb/.svn/text-base/hc2cbdft_16.c.svn-base @ 2:c649e493c30a

Removed a redundant cout<<
author Geogaddi\David <d.m.ronan@qmul.ac.uk>
date Thu, 09 Jul 2015 21:45:55 +0100
parents 25bf17994ef1
children
line wrap: on
line source
/*
 * Copyright (c) 2003, 2007-8 Matteo Frigo
 * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Mon Feb  9 19:56:15 EST 2009 */

#include "codelet-rdft.h"

#ifdef HAVE_FMA

/* Generated by: ../../../genfft/gen_hc2cdft -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 16 -dif -name hc2cbdft_16 -include hc2cb.h */

/*
 * This function contains 206 FP additions, 100 FP multiplications,
 * (or, 136 additions, 30 multiplications, 70 fused multiply/add),
 * 97 stack variables, 3 constants, and 64 memory accesses
 */
#include "hc2cb.h"

static void hc2cbdft_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
     DK(KP923879532, +0.923879532511286756128183189396788286822416626);
     DK(KP414213562, +0.414213562373095048801688724209698078569671875);
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
     INT m;
     for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 30, MAKE_VOLATILE_STRIDE(rs)) {
	  E T3w, T3z, T2Y, T3D, T3x, T3m, T3u, T3C, T3y, T3o, T3k, T3E, T3A;
	  {
	       E T20, Tf, T3Q, T32, T3V, T3f, T2a, TN, T2f, T1m, T3G, T2G, T3L, T2T, T26;
	       E T1F, T3M, T2N, T3H, T2W, T25, Tu, T1n, T1o, T3R, T3i, T2g, T1a, T21, T1y;
	       E T3W, T39;
	       {
		    E T2R, T1B, T2S, T1E;
		    {
			 E T1e, T3, T1C, TA, Tx, T6, T1D, T1h, Td, T1A, TL, T1k, Ta, TC, TF;
			 E T1z;
			 {
			      E T4, T5, T1f, T1g;
			      {
				   E T1, T2, Ty, Tz;
				   T1 = Rp[0];
				   T2 = Rm[WS(rs, 7)];
				   Ty = Ip[0];
				   Tz = Im[WS(rs, 7)];
				   T4 = Rp[WS(rs, 4)];
				   T1e = T1 - T2;
				   T3 = T1 + T2;
				   T1C = Ty - Tz;
				   TA = Ty + Tz;
				   T5 = Rm[WS(rs, 3)];
			      }
			      T1f = Ip[WS(rs, 4)];
			      T1g = Im[WS(rs, 3)];
			      {
				   E Tb, Tc, TI, TJ;
				   Tb = Rm[WS(rs, 1)];
				   Tx = T4 - T5;
				   T6 = T4 + T5;
				   T1D = T1f - T1g;
				   T1h = T1f + T1g;
				   Tc = Rp[WS(rs, 6)];
				   TI = Im[WS(rs, 1)];
				   TJ = Ip[WS(rs, 6)];
				   {
					E T8, TH, TK, T9, TD, TE;
					T8 = Rp[WS(rs, 2)];
					Td = Tb + Tc;
					TH = Tb - Tc;
					T1A = TJ - TI;
					TK = TI + TJ;
					T9 = Rm[WS(rs, 5)];
					TD = Ip[WS(rs, 2)];
					TE = Im[WS(rs, 5)];
					TL = TH + TK;
					T1k = TH - TK;
					Ta = T8 + T9;
					TC = T8 - T9;
					TF = TD + TE;
					T1z = TD - TE;
				   }
			      }
			 }
			 {
			      E T2E, TB, T1l, T1i, T3d, T3e, TM, T2F;
			      {
				   E T7, TG, Te, T30, T31, T1j;
				   T2E = T3 - T6;
				   T7 = T3 + T6;
				   T1j = TC - TF;
				   TG = TC + TF;
				   Te = Ta + Td;
				   T2R = Ta - Td;
				   TB = Tx + TA;
				   T30 = TA - Tx;
				   T31 = T1j - T1k;
				   T1l = T1j + T1k;
				   T1i = T1e - T1h;
				   T3d = T1e + T1h;
				   T20 = T7 - Te;
				   Tf = T7 + Te;
				   T3Q = FNMS(KP707106781, T31, T30);
				   T32 = FMA(KP707106781, T31, T30);
				   T3e = TG + TL;
				   TM = TG - TL;
			      }
			      T3V = FMA(KP707106781, T3e, T3d);
			      T3f = FNMS(KP707106781, T3e, T3d);
			      T2a = FNMS(KP707106781, TM, TB);
			      TN = FMA(KP707106781, TM, TB);
			      T2F = T1A - T1z;
			      T1B = T1z + T1A;
			      T2f = FNMS(KP707106781, T1l, T1i);
			      T1m = FMA(KP707106781, T1l, T1i);
			      T3G = T2E - T2F;
			      T2G = T2E + T2F;
			      T2S = T1C - T1D;
			      T1E = T1C + T1D;
			 }
		    }
		    {
			 E T34, TS, T2H, Tm, T1u, T2I, T33, TX, Tq, T14, Tp, T1v, T12, Tr, T15;
			 E T16;
			 {
			      E Tj, TT, Ti, T1s, TR, Tk, TU, TV;
			      {
				   E Tg, Th, TP, TQ;
				   Tg = Rp[WS(rs, 1)];
				   T3L = T2S - T2R;
				   T2T = T2R + T2S;
				   T26 = T1E - T1B;
				   T1F = T1B + T1E;
				   Th = Rm[WS(rs, 6)];
				   TP = Ip[WS(rs, 1)];
				   TQ = Im[WS(rs, 6)];
				   Tj = Rp[WS(rs, 5)];
				   TT = Tg - Th;
				   Ti = Tg + Th;
				   T1s = TP - TQ;
				   TR = TP + TQ;
				   Tk = Rm[WS(rs, 2)];
				   TU = Ip[WS(rs, 5)];
				   TV = Im[WS(rs, 2)];
			      }
			      {
				   E Tn, To, T10, T11;
				   Tn = Rm[0];
				   {
					E TO, Tl, T1t, TW;
					TO = Tj - Tk;
					Tl = Tj + Tk;
					T1t = TU - TV;
					TW = TU + TV;
					T34 = TR - TO;
					TS = TO + TR;
					T2H = Ti - Tl;
					Tm = Ti + Tl;
					T1u = T1s + T1t;
					T2I = T1s - T1t;
					T33 = TT + TW;
					TX = TT - TW;
					To = Rp[WS(rs, 7)];
				   }
				   T10 = Im[0];
				   T11 = Ip[WS(rs, 7)];
				   Tq = Rp[WS(rs, 3)];
				   T14 = Tn - To;
				   Tp = Tn + To;
				   T1v = T11 - T10;
				   T12 = T10 + T11;
				   Tr = Rm[WS(rs, 4)];
				   T15 = Ip[WS(rs, 3)];
				   T16 = Im[WS(rs, 4)];
			      }
			 }
			 {
			      E T13, T1x, T18, T35, T3g, T3h, T38, TY, T19;
			      {
				   E T2U, T2J, T37, Tt, T36, T2V, T2M, T2K, T2L;
				   T2U = T2H + T2I;
				   T2J = T2H - T2I;
				   {
					E TZ, Ts, T1w, T17;
					TZ = Tq - Tr;
					Ts = Tq + Tr;
					T1w = T15 - T16;
					T17 = T15 + T16;
					T37 = TZ + T12;
					T13 = TZ - T12;
					T2K = Tp - Ts;
					Tt = Tp + Ts;
					T1x = T1v + T1w;
					T2L = T1v - T1w;
					T36 = T14 + T17;
					T18 = T14 - T17;
				   }
				   T2V = T2L - T2K;
				   T2M = T2K + T2L;
				   T3M = T2J - T2M;
				   T2N = T2J + T2M;
				   T3H = T2V - T2U;
				   T2W = T2U + T2V;
				   T35 = FMA(KP414213562, T34, T33);
				   T3g = FNMS(KP414213562, T33, T34);
				   T25 = Tm - Tt;
				   Tu = Tm + Tt;
				   T3h = FNMS(KP414213562, T36, T37);
				   T38 = FMA(KP414213562, T37, T36);
			      }
			      T1n = FNMS(KP414213562, TS, TX);
			      TY = FMA(KP414213562, TX, TS);
			      T19 = FNMS(KP414213562, T18, T13);
			      T1o = FMA(KP414213562, T13, T18);
			      T3R = T3h - T3g;
			      T3i = T3g + T3h;
			      T2g = T19 - TY;
			      T1a = TY + T19;
			      T21 = T1x - T1u;
			      T1y = T1u + T1x;
			      T3W = T35 + T38;
			      T39 = T35 - T38;
			 }
		    }
	       }
	       {
		    E T27, T22, T2c, T2u, T2x, T2h, T2s, T2A, T2w, T2B, T2v;
		    {
			 E T1K, Tv, T1G, T1N, T1Q, T1b, T2b, T1p, Tw, T1d;
			 T1K = Tf - Tu;
			 Tv = Tf + Tu;
			 T1G = T1y + T1F;
			 T1N = T1F - T1y;
			 T1Q = FNMS(KP923879532, T1a, TN);
			 T1b = FMA(KP923879532, T1a, TN);
			 T2b = T1n - T1o;
			 T1p = T1n + T1o;
			 Tw = W[0];
			 T1d = W[1];
			 {
			      E T1T, T1O, T1W, T1S, T1X, T1R;
			      {
				   E T1J, T1M, T1L, T1V, T1P, T1q;
				   T1T = FNMS(KP923879532, T1p, T1m);
				   T1q = FMA(KP923879532, T1p, T1m);
				   {
					E T1c, T1I, T1H, T1r;
					T1c = Tw * T1b;
					T1J = W[14];
					T1H = Tw * T1q;
					T1r = FMA(T1d, T1q, T1c);
					T1M = W[15];
					T1L = T1J * T1K;
					T1I = FNMS(T1d, T1b, T1H);
					Rm[0] = Tv + T1r;
					Rp[0] = Tv - T1r;
					T1V = T1M * T1K;
					Im[0] = T1I - T1G;
					Ip[0] = T1G + T1I;
					T1P = W[16];
				   }
				   T1O = FNMS(T1M, T1N, T1L);
				   T1W = FMA(T1J, T1N, T1V);
				   T1S = W[17];
				   T1X = T1P * T1T;
				   T1R = T1P * T1Q;
			      }
			      {
				   E T2r, T2n, T2q, T2p, T2z, T2t, T2o, T1Y, T1U;
				   T27 = T25 + T26;
				   T2r = T26 - T25;
				   T2o = T20 - T21;
				   T22 = T20 + T21;
				   T1Y = FNMS(T1S, T1Q, T1X);
				   T1U = FMA(T1S, T1T, T1R);
				   T2n = W[22];
				   T2q = W[23];
				   Im[WS(rs, 4)] = T1Y - T1W;
				   Ip[WS(rs, 4)] = T1W + T1Y;
				   Rm[WS(rs, 4)] = T1O + T1U;
				   Rp[WS(rs, 4)] = T1O - T1U;
				   T2p = T2n * T2o;
				   T2z = T2q * T2o;
				   T2c = FMA(KP923879532, T2b, T2a);
				   T2u = FNMS(KP923879532, T2b, T2a);
				   T2x = FNMS(KP923879532, T2g, T2f);
				   T2h = FMA(KP923879532, T2g, T2f);
				   T2t = W[24];
				   T2s = FNMS(T2q, T2r, T2p);
				   T2A = FMA(T2n, T2r, T2z);
				   T2w = W[25];
				   T2B = T2t * T2x;
				   T2v = T2t * T2u;
			      }
			 }
		    }
		    {
			 E T28, T2k, T2e, T2l, T2d;
			 {
			      E T1Z, T24, T23, T2j, T29, T2C, T2y;
			      T2C = FNMS(T2w, T2u, T2B);
			      T2y = FMA(T2w, T2x, T2v);
			      T1Z = W[6];
			      T24 = W[7];
			      Im[WS(rs, 6)] = T2C - T2A;
			      Ip[WS(rs, 6)] = T2A + T2C;
			      Rm[WS(rs, 6)] = T2s + T2y;
			      Rp[WS(rs, 6)] = T2s - T2y;
			      T23 = T1Z * T22;
			      T2j = T24 * T22;
			      T29 = W[8];
			      T28 = FNMS(T24, T27, T23);
			      T2k = FMA(T1Z, T27, T2j);
			      T2e = W[9];
			      T2l = T29 * T2h;
			      T2d = T29 * T2c;
			 }
			 {
			      E T4a, T4d, T3O, T4h, T4b, T40, T48, T4g, T4c, T42, T3Y;
			      {
				   E T3N, T47, T43, T46, T3F, T45, T4f, T3K, T3J, T3S, T3X, T3Z, T49, T41, T3T;
				   E T3U;
				   {
					E T44, T3I, T2m, T2i, T3P;
					T44 = FNMS(KP707106781, T3H, T3G);
					T3I = FMA(KP707106781, T3H, T3G);
					T2m = FNMS(T2e, T2c, T2l);
					T2i = FMA(T2e, T2h, T2d);
					T3N = FMA(KP707106781, T3M, T3L);
					T47 = FNMS(KP707106781, T3M, T3L);
					Im[WS(rs, 2)] = T2m - T2k;
					Ip[WS(rs, 2)] = T2k + T2m;
					Rm[WS(rs, 2)] = T28 + T2i;
					Rp[WS(rs, 2)] = T28 - T2i;
					T43 = W[26];
					T46 = W[27];
					T3F = W[10];
					T45 = T43 * T44;
					T4f = T46 * T44;
					T3K = W[11];
					T3J = T3F * T3I;
					T4a = FNMS(KP923879532, T3R, T3Q);
					T3S = FMA(KP923879532, T3R, T3Q);
					T3X = FNMS(KP923879532, T3W, T3V);
					T4d = FMA(KP923879532, T3W, T3V);
					T3Z = T3K * T3I;
					T3P = W[12];
					T49 = W[28];
					T41 = T3P * T3X;
					T3T = T3P * T3S;
				   }
				   T3O = FNMS(T3K, T3N, T3J);
				   T4h = T49 * T4d;
				   T4b = T49 * T4a;
				   T40 = FMA(T3F, T3N, T3Z);
				   T3U = W[13];
				   T48 = FNMS(T46, T47, T45);
				   T4g = FMA(T43, T47, T4f);
				   T4c = W[29];
				   T42 = FNMS(T3U, T3S, T41);
				   T3Y = FMA(T3U, T3X, T3T);
			      }
			      {
				   E T3t, T2X, T3p, T3s, T2D, T3r, T3B, T2Q, T2P, T3a, T3j, T3l, T3v, T3n, T3b;
				   E T3c;
				   {
					E T2O, T3q, T4i, T4e, T2Z;
					T4i = FNMS(T4c, T4a, T4h);
					T4e = FMA(T4c, T4d, T4b);
					Im[WS(rs, 3)] = T42 - T40;
					Ip[WS(rs, 3)] = T40 + T42;
					Rm[WS(rs, 3)] = T3O + T3Y;
					Rp[WS(rs, 3)] = T3O - T3Y;
					Im[WS(rs, 7)] = T4i - T4g;
					Ip[WS(rs, 7)] = T4g + T4i;
					Rm[WS(rs, 7)] = T48 + T4e;
					Rp[WS(rs, 7)] = T48 - T4e;
					T3t = FNMS(KP707106781, T2W, T2T);
					T2X = FMA(KP707106781, T2W, T2T);
					T2O = FMA(KP707106781, T2N, T2G);
					T3q = FNMS(KP707106781, T2N, T2G);
					T3p = W[18];
					T3s = W[19];
					T2D = W[2];
					T3r = T3p * T3q;
					T3B = T3s * T3q;
					T2Q = W[3];
					T2P = T2D * T2O;
					T3a = FMA(KP923879532, T39, T32);
					T3w = FNMS(KP923879532, T39, T32);
					T3z = FMA(KP923879532, T3i, T3f);
					T3j = FNMS(KP923879532, T3i, T3f);
					T3l = T2Q * T2O;
					T2Z = W[4];
					T3v = W[20];
					T3n = T2Z * T3j;
					T3b = T2Z * T3a;
				   }
				   T2Y = FNMS(T2Q, T2X, T2P);
				   T3D = T3v * T3z;
				   T3x = T3v * T3w;
				   T3m = FMA(T2D, T2X, T3l);
				   T3c = W[5];
				   T3u = FNMS(T3s, T3t, T3r);
				   T3C = FMA(T3p, T3t, T3B);
				   T3y = W[21];
				   T3o = FNMS(T3c, T3a, T3n);
				   T3k = FMA(T3c, T3j, T3b);
			      }
			 }
		    }
	       }
	  }
	  T3E = FNMS(T3y, T3w, T3D);
	  T3A = FMA(T3y, T3z, T3x);
	  Im[WS(rs, 1)] = T3o - T3m;
	  Ip[WS(rs, 1)] = T3m + T3o;
	  Rm[WS(rs, 1)] = T2Y + T3k;
	  Rp[WS(rs, 1)] = T2Y - T3k;
	  Im[WS(rs, 5)] = T3E - T3C;
	  Ip[WS(rs, 5)] = T3C + T3E;
	  Rm[WS(rs, 5)] = T3u + T3A;
	  Rp[WS(rs, 5)] = T3u - T3A;
     }
}

static const tw_instr twinstr[] = {
     {TW_FULL, 1, 16},
     {TW_NEXT, 1, 0}
};

static const hc2c_desc desc = { 16, "hc2cbdft_16", twinstr, &GENUS, {136, 30, 70, 0} };

void X(codelet_hc2cbdft_16) (planner *p) {
     X(khc2c_register) (p, hc2cbdft_16, &desc, HC2C_VIA_DFT);
}
#else				/* HAVE_FMA */

/* Generated by: ../../../genfft/gen_hc2cdft -compact -variables 4 -pipeline-latency 4 -sign 1 -n 16 -dif -name hc2cbdft_16 -include hc2cb.h */

/*
 * This function contains 206 FP additions, 84 FP multiplications,
 * (or, 168 additions, 46 multiplications, 38 fused multiply/add),
 * 60 stack variables, 3 constants, and 64 memory accesses
 */
#include "hc2cb.h"

static void hc2cbdft_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
     DK(KP923879532, +0.923879532511286756128183189396788286822416626);
     DK(KP382683432, +0.382683432365089771728459984030398866761344562);
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
     INT m;
     for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 30, MAKE_VOLATILE_STRIDE(rs)) {
	  E TB, T2L, T30, T1n, Tf, T1U, T2H, T3p, T1E, T1Z, TM, T31, T2s, T3k, T1i;
	  E T2M, Tu, T1Y, T2Q, T2X, T2T, T2Y, TY, T1d, T19, T1e, T2v, T2C, T2y, T2D;
	  E T1x, T1V;
	  {
	       E T3, T1j, TA, T1B, T6, Tx, T1m, T1C, Ta, TC, TF, T1y, Td, TH, TK;
	       E T1z;
	       {
		    E T1, T2, Ty, Tz;
		    T1 = Rp[0];
		    T2 = Rm[WS(rs, 7)];
		    T3 = T1 + T2;
		    T1j = T1 - T2;
		    Ty = Ip[0];
		    Tz = Im[WS(rs, 7)];
		    TA = Ty + Tz;
		    T1B = Ty - Tz;
	       }
	       {
		    E T4, T5, T1k, T1l;
		    T4 = Rp[WS(rs, 4)];
		    T5 = Rm[WS(rs, 3)];
		    T6 = T4 + T5;
		    Tx = T4 - T5;
		    T1k = Ip[WS(rs, 4)];
		    T1l = Im[WS(rs, 3)];
		    T1m = T1k + T1l;
		    T1C = T1k - T1l;
	       }
	       {
		    E T8, T9, TD, TE;
		    T8 = Rp[WS(rs, 2)];
		    T9 = Rm[WS(rs, 5)];
		    Ta = T8 + T9;
		    TC = T8 - T9;
		    TD = Ip[WS(rs, 2)];
		    TE = Im[WS(rs, 5)];
		    TF = TD + TE;
		    T1y = TD - TE;
	       }
	       {
		    E Tb, Tc, TI, TJ;
		    Tb = Rm[WS(rs, 1)];
		    Tc = Rp[WS(rs, 6)];
		    Td = Tb + Tc;
		    TH = Tb - Tc;
		    TI = Im[WS(rs, 1)];
		    TJ = Ip[WS(rs, 6)];
		    TK = TI + TJ;
		    T1z = TJ - TI;
	       }
	       {
		    E T7, Te, TG, TL;
		    TB = Tx + TA;
		    T2L = TA - Tx;
		    T30 = T1j + T1m;
		    T1n = T1j - T1m;
		    T7 = T3 + T6;
		    Te = Ta + Td;
		    Tf = T7 + Te;
		    T1U = T7 - Te;
		    {
			 E T2F, T2G, T1A, T1D;
			 T2F = Ta - Td;
			 T2G = T1B - T1C;
			 T2H = T2F + T2G;
			 T3p = T2G - T2F;
			 T1A = T1y + T1z;
			 T1D = T1B + T1C;
			 T1E = T1A + T1D;
			 T1Z = T1D - T1A;
		    }
		    TG = TC + TF;
		    TL = TH + TK;
		    TM = KP707106781 * (TG - TL);
		    T31 = KP707106781 * (TG + TL);
		    {
			 E T2q, T2r, T1g, T1h;
			 T2q = T3 - T6;
			 T2r = T1z - T1y;
			 T2s = T2q + T2r;
			 T3k = T2q - T2r;
			 T1g = TC - TF;
			 T1h = TH - TK;
			 T1i = KP707106781 * (T1g + T1h);
			 T2M = KP707106781 * (T1g - T1h);
		    }
	       }
	  }
	  {
	       E Ti, TT, TR, T1r, Tl, TO, TW, T1s, Tp, T14, T12, T1u, Ts, TZ, T17;
	       E T1v;
	       {
		    E Tg, Th, TP, TQ;
		    Tg = Rp[WS(rs, 1)];
		    Th = Rm[WS(rs, 6)];
		    Ti = Tg + Th;
		    TT = Tg - Th;
		    TP = Ip[WS(rs, 1)];
		    TQ = Im[WS(rs, 6)];
		    TR = TP + TQ;
		    T1r = TP - TQ;
	       }
	       {
		    E Tj, Tk, TU, TV;
		    Tj = Rp[WS(rs, 5)];
		    Tk = Rm[WS(rs, 2)];
		    Tl = Tj + Tk;
		    TO = Tj - Tk;
		    TU = Ip[WS(rs, 5)];
		    TV = Im[WS(rs, 2)];
		    TW = TU + TV;
		    T1s = TU - TV;
	       }
	       {
		    E Tn, To, T10, T11;
		    Tn = Rm[0];
		    To = Rp[WS(rs, 7)];
		    Tp = Tn + To;
		    T14 = Tn - To;
		    T10 = Im[0];
		    T11 = Ip[WS(rs, 7)];
		    T12 = T10 + T11;
		    T1u = T11 - T10;
	       }
	       {
		    E Tq, Tr, T15, T16;
		    Tq = Rp[WS(rs, 3)];
		    Tr = Rm[WS(rs, 4)];
		    Ts = Tq + Tr;
		    TZ = Tq - Tr;
		    T15 = Ip[WS(rs, 3)];
		    T16 = Im[WS(rs, 4)];
		    T17 = T15 + T16;
		    T1v = T15 - T16;
	       }
	       {
		    E Tm, Tt, T2O, T2P;
		    Tm = Ti + Tl;
		    Tt = Tp + Ts;
		    Tu = Tm + Tt;
		    T1Y = Tm - Tt;
		    T2O = TR - TO;
		    T2P = TT + TW;
		    T2Q = FMA(KP382683432, T2O, KP923879532 * T2P);
		    T2X = FNMS(KP923879532, T2O, KP382683432 * T2P);
	       }
	       {
		    E T2R, T2S, TS, TX;
		    T2R = TZ + T12;
		    T2S = T14 + T17;
		    T2T = FMA(KP382683432, T2R, KP923879532 * T2S);
		    T2Y = FNMS(KP923879532, T2R, KP382683432 * T2S);
		    TS = TO + TR;
		    TX = TT - TW;
		    TY = FMA(KP923879532, TS, KP382683432 * TX);
		    T1d = FNMS(KP382683432, TS, KP923879532 * TX);
	       }
	       {
		    E T13, T18, T2t, T2u;
		    T13 = TZ - T12;
		    T18 = T14 - T17;
		    T19 = FNMS(KP382683432, T18, KP923879532 * T13);
		    T1e = FMA(KP382683432, T13, KP923879532 * T18);
		    T2t = Ti - Tl;
		    T2u = T1r - T1s;
		    T2v = T2t - T2u;
		    T2C = T2t + T2u;
	       }
	       {
		    E T2w, T2x, T1t, T1w;
		    T2w = Tp - Ts;
		    T2x = T1u - T1v;
		    T2y = T2w + T2x;
		    T2D = T2x - T2w;
		    T1t = T1r + T1s;
		    T1w = T1u + T1v;
		    T1x = T1t + T1w;
		    T1V = T1w - T1t;
	       }
	  }
	  {
	       E Tv, T1F, T1b, T1N, T1p, T1P, T1L, T1R;
	       Tv = Tf + Tu;
	       T1F = T1x + T1E;
	       {
		    E TN, T1a, T1f, T1o;
		    TN = TB + TM;
		    T1a = TY + T19;
		    T1b = TN + T1a;
		    T1N = TN - T1a;
		    T1f = T1d + T1e;
		    T1o = T1i + T1n;
		    T1p = T1f + T1o;
		    T1P = T1o - T1f;
		    {
			 E T1I, T1K, T1H, T1J;
			 T1I = Tf - Tu;
			 T1K = T1E - T1x;
			 T1H = W[14];
			 T1J = W[15];
			 T1L = FNMS(T1J, T1K, T1H * T1I);
			 T1R = FMA(T1J, T1I, T1H * T1K);
		    }
	       }
	       {
		    E T1q, T1G, Tw, T1c;
		    Tw = W[0];
		    T1c = W[1];
		    T1q = FMA(Tw, T1b, T1c * T1p);
		    T1G = FNMS(T1c, T1b, Tw * T1p);
		    Rp[0] = Tv - T1q;
		    Ip[0] = T1F + T1G;
		    Rm[0] = Tv + T1q;
		    Im[0] = T1G - T1F;
	       }
	       {
		    E T1Q, T1S, T1M, T1O;
		    T1M = W[16];
		    T1O = W[17];
		    T1Q = FMA(T1M, T1N, T1O * T1P);
		    T1S = FNMS(T1O, T1N, T1M * T1P);
		    Rp[WS(rs, 4)] = T1L - T1Q;
		    Ip[WS(rs, 4)] = T1R + T1S;
		    Rm[WS(rs, 4)] = T1L + T1Q;
		    Im[WS(rs, 4)] = T1S - T1R;
	       }
	  }
	  {
	       E T25, T2j, T29, T2l, T21, T2b, T2h, T2n;
	       {
		    E T23, T24, T27, T28;
		    T23 = TB - TM;
		    T24 = T1d - T1e;
		    T25 = T23 + T24;
		    T2j = T23 - T24;
		    T27 = T19 - TY;
		    T28 = T1n - T1i;
		    T29 = T27 + T28;
		    T2l = T28 - T27;
	       }
	       {
		    E T1W, T20, T1T, T1X;
		    T1W = T1U + T1V;
		    T20 = T1Y + T1Z;
		    T1T = W[6];
		    T1X = W[7];
		    T21 = FNMS(T1X, T20, T1T * T1W);
		    T2b = FMA(T1X, T1W, T1T * T20);
	       }
	       {
		    E T2e, T2g, T2d, T2f;
		    T2e = T1U - T1V;
		    T2g = T1Z - T1Y;
		    T2d = W[22];
		    T2f = W[23];
		    T2h = FNMS(T2f, T2g, T2d * T2e);
		    T2n = FMA(T2f, T2e, T2d * T2g);
	       }
	       {
		    E T2a, T2c, T22, T26;
		    T22 = W[8];
		    T26 = W[9];
		    T2a = FMA(T22, T25, T26 * T29);
		    T2c = FNMS(T26, T25, T22 * T29);
		    Rp[WS(rs, 2)] = T21 - T2a;
		    Ip[WS(rs, 2)] = T2b + T2c;
		    Rm[WS(rs, 2)] = T21 + T2a;
		    Im[WS(rs, 2)] = T2c - T2b;
	       }
	       {
		    E T2m, T2o, T2i, T2k;
		    T2i = W[24];
		    T2k = W[25];
		    T2m = FMA(T2i, T2j, T2k * T2l);
		    T2o = FNMS(T2k, T2j, T2i * T2l);
		    Rp[WS(rs, 6)] = T2h - T2m;
		    Ip[WS(rs, 6)] = T2n + T2o;
		    Rm[WS(rs, 6)] = T2h + T2m;
		    Im[WS(rs, 6)] = T2o - T2n;
	       }
	  }
	  {
	       E T2A, T38, T2I, T3a, T2V, T3d, T33, T3f, T2z, T2E;
	       T2z = KP707106781 * (T2v + T2y);
	       T2A = T2s + T2z;
	       T38 = T2s - T2z;
	       T2E = KP707106781 * (T2C + T2D);
	       T2I = T2E + T2H;
	       T3a = T2H - T2E;
	       {
		    E T2N, T2U, T2Z, T32;
		    T2N = T2L + T2M;
		    T2U = T2Q - T2T;
		    T2V = T2N + T2U;
		    T3d = T2N - T2U;
		    T2Z = T2X + T2Y;
		    T32 = T30 - T31;
		    T33 = T2Z + T32;
		    T3f = T32 - T2Z;
	       }
	       {
		    E T2J, T35, T34, T36;
		    {
			 E T2p, T2B, T2K, T2W;
			 T2p = W[2];
			 T2B = W[3];
			 T2J = FNMS(T2B, T2I, T2p * T2A);
			 T35 = FMA(T2B, T2A, T2p * T2I);
			 T2K = W[4];
			 T2W = W[5];
			 T34 = FMA(T2K, T2V, T2W * T33);
			 T36 = FNMS(T2W, T2V, T2K * T33);
		    }
		    Rp[WS(rs, 1)] = T2J - T34;
		    Ip[WS(rs, 1)] = T35 + T36;
		    Rm[WS(rs, 1)] = T2J + T34;
		    Im[WS(rs, 1)] = T36 - T35;
	       }
	       {
		    E T3b, T3h, T3g, T3i;
		    {
			 E T37, T39, T3c, T3e;
			 T37 = W[18];
			 T39 = W[19];
			 T3b = FNMS(T39, T3a, T37 * T38);
			 T3h = FMA(T39, T38, T37 * T3a);
			 T3c = W[20];
			 T3e = W[21];
			 T3g = FMA(T3c, T3d, T3e * T3f);
			 T3i = FNMS(T3e, T3d, T3c * T3f);
		    }
		    Rp[WS(rs, 5)] = T3b - T3g;
		    Ip[WS(rs, 5)] = T3h + T3i;
		    Rm[WS(rs, 5)] = T3b + T3g;
		    Im[WS(rs, 5)] = T3i - T3h;
	       }
	  }
	  {
	       E T3m, T3E, T3q, T3G, T3v, T3J, T3z, T3L, T3l, T3o;
	       T3l = KP707106781 * (T2D - T2C);
	       T3m = T3k + T3l;
	       T3E = T3k - T3l;
	       T3o = KP707106781 * (T2v - T2y);
	       T3q = T3o + T3p;
	       T3G = T3p - T3o;
	       {
		    E T3t, T3u, T3x, T3y;
		    T3t = T2L - T2M;
		    T3u = T2X - T2Y;
		    T3v = T3t + T3u;
		    T3J = T3t - T3u;
		    T3x = T31 + T30;
		    T3y = T2Q + T2T;
		    T3z = T3x - T3y;
		    T3L = T3y + T3x;
	       }
	       {
		    E T3r, T3B, T3A, T3C;
		    {
			 E T3j, T3n, T3s, T3w;
			 T3j = W[10];
			 T3n = W[11];
			 T3r = FNMS(T3n, T3q, T3j * T3m);
			 T3B = FMA(T3n, T3m, T3j * T3q);
			 T3s = W[12];
			 T3w = W[13];
			 T3A = FMA(T3s, T3v, T3w * T3z);
			 T3C = FNMS(T3w, T3v, T3s * T3z);
		    }
		    Rp[WS(rs, 3)] = T3r - T3A;
		    Ip[WS(rs, 3)] = T3B + T3C;
		    Rm[WS(rs, 3)] = T3r + T3A;
		    Im[WS(rs, 3)] = T3C - T3B;
	       }
	       {
		    E T3H, T3N, T3M, T3O;
		    {
			 E T3D, T3F, T3I, T3K;
			 T3D = W[26];
			 T3F = W[27];
			 T3H = FNMS(T3F, T3G, T3D * T3E);
			 T3N = FMA(T3F, T3E, T3D * T3G);
			 T3I = W[28];
			 T3K = W[29];
			 T3M = FMA(T3I, T3J, T3K * T3L);
			 T3O = FNMS(T3K, T3J, T3I * T3L);
		    }
		    Rp[WS(rs, 7)] = T3H - T3M;
		    Ip[WS(rs, 7)] = T3N + T3O;
		    Rm[WS(rs, 7)] = T3H + T3M;
		    Im[WS(rs, 7)] = T3O - T3N;
	       }
	  }
     }
}

static const tw_instr twinstr[] = {
     {TW_FULL, 1, 16},
     {TW_NEXT, 1, 0}
};

static const hc2c_desc desc = { 16, "hc2cbdft_16", twinstr, &GENUS, {168, 46, 38, 0} };

void X(codelet_hc2cbdft_16) (planner *p) {
     X(khc2c_register) (p, hc2cbdft_16, &desc, HC2C_VIA_DFT);
}
#endif				/* HAVE_FMA */