view Lib/fftw-3.2.1/rdft/scalar/r2cb/.svn/text-base/hc2cbdft_10.c.svn-base @ 2:c649e493c30a

Removed a redundant cout<<
author Geogaddi\David <d.m.ronan@qmul.ac.uk>
date Thu, 09 Jul 2015 21:45:55 +0100
parents 25bf17994ef1
children
line wrap: on
line source
/*
 * Copyright (c) 2003, 2007-8 Matteo Frigo
 * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Mon Feb  9 19:56:14 EST 2009 */

#include "codelet-rdft.h"

#ifdef HAVE_FMA

/* Generated by: ../../../genfft/gen_hc2cdft -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -dif -name hc2cbdft_10 -include hc2cb.h */

/*
 * This function contains 122 FP additions, 72 FP multiplications,
 * (or, 68 additions, 18 multiplications, 54 fused multiply/add),
 * 95 stack variables, 4 constants, and 40 memory accesses
 */
#include "hc2cb.h"

static void hc2cbdft_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
     DK(KP618033988, +0.618033988749894848204586834365638117720309180);
     INT m;
     for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 18, MAKE_VOLATILE_STRIDE(rs)) {
	  E T2d, T2f;
	  {
	       E T1g, TQ, T1z, TZ, Tu, T23, T1p, T14, Tt, T27, T13, Tj, Tz, T1i, T18;
	       E TJ, TS, T19, Ty, TA;
	       {
		    E Tl, T3, T7, Tm, T6, Tr, TY, T1n, Th, T8, T1, T2;
		    T1 = Rp[0];
		    T2 = Rm[WS(rs, 4)];
		    {
			 E Te, Tp, Td, Tf, Tb, Tc;
			 Tb = Rp[WS(rs, 4)];
			 Tc = Rm[0];
			 Te = Rm[WS(rs, 3)];
			 Tl = T1 - T2;
			 T3 = T1 + T2;
			 Tp = Tb - Tc;
			 Td = Tb + Tc;
			 Tf = Rp[WS(rs, 1)];
			 {
			      E T4, T5, Tq, Tg;
			      T4 = Rp[WS(rs, 2)];
			      T5 = Rm[WS(rs, 2)];
			      T7 = Rm[WS(rs, 1)];
			      Tq = Te - Tf;
			      Tg = Te + Tf;
			      Tm = T4 - T5;
			      T6 = T4 + T5;
			      Tr = Tp + Tq;
			      TY = Tp - Tq;
			      T1n = Td - Tg;
			      Th = Td + Tg;
			      T8 = Rp[WS(rs, 3)];
			 }
		    }
		    {
			 E TO, Tn, T9, TP;
			 TO = Ip[0];
			 Tn = T7 - T8;
			 T9 = T7 + T8;
			 TP = Im[WS(rs, 4)];
			 {
			      E TG, TH, TF, T16, TD, TE, Ti;
			      TD = Ip[WS(rs, 4)];
			      {
				   E TX, To, T1o, Ta, Ts;
				   TX = Tm - Tn;
				   To = Tm + Tn;
				   T1o = T6 - T9;
				   Ta = T6 + T9;
				   T1g = TO - TP;
				   TQ = TO + TP;
				   T1z = FNMS(KP618033988, TX, TY);
				   TZ = FMA(KP618033988, TY, TX);
				   Ts = To + Tr;
				   Tu = To - Tr;
				   T23 = FMA(KP618033988, T1n, T1o);
				   T1p = FNMS(KP618033988, T1o, T1n);
				   Ti = Ta + Th;
				   T14 = Ta - Th;
				   Tt = FNMS(KP250000000, Ts, Tl);
				   T27 = Tl + Ts;
				   TE = Im[0];
			      }
			      T13 = FNMS(KP250000000, Ti, T3);
			      Tj = T3 + Ti;
			      TG = Im[WS(rs, 3)];
			      TH = Ip[WS(rs, 1)];
			      TF = TD + TE;
			      T16 = TD - TE;
			      {
				   E Tw, T17, TI, Tx;
				   Tw = Ip[WS(rs, 2)];
				   T17 = TH - TG;
				   TI = TG + TH;
				   Tx = Im[WS(rs, 2)];
				   Tz = Im[WS(rs, 1)];
				   T1i = T16 + T17;
				   T18 = T16 - T17;
				   TJ = TF + TI;
				   TS = TF - TI;
				   T19 = Tw - Tx;
				   Ty = Tw + Tx;
				   TA = Ip[WS(rs, 3)];
			      }
			 }
		    }
	       }
	       {
		    E T26, T2y, T2a, T28, T1q, T1K, T24, T2k, T10, T1Q, T1A, T2q, T29, Tk, TN;
		    E T2c, T1M, T1P, T2w, TM, T1O, T1S, T1s, T1x, T2m, T2p, T1w, T1C, T2o, T2s;
		    E T12, T1f, T1G, T1J, T1I, T1E, T1e, T1U, T1W, T21, T2g, T2j, T20, T2e, T2i;
		    E T2u, T1a, TB;
		    T1a = TA - Tz;
		    TB = Tz + TA;
		    {
			 E T1Y, T1c, T1u, T1t, T1N, TL, TK, Tv, T2n, T1v;
			 {
			      E T1l, TV, T1k, TU, T1b, T1h;
			      T26 = W[9];
			      T1b = T19 - T1a;
			      T1h = T19 + T1a;
			      {
				   E TC, TR, T1j, TT;
				   TC = Ty + TB;
				   TR = Ty - TB;
				   T1Y = FMA(KP618033988, T18, T1b);
				   T1c = FNMS(KP618033988, T1b, T18);
				   T1j = T1h + T1i;
				   T1l = T1h - T1i;
				   T1u = FNMS(KP618033988, TC, TJ);
				   TK = FMA(KP618033988, TJ, TC);
				   TT = TR + TS;
				   TV = TR - TS;
				   T2y = T1g + T1j;
				   T1k = FNMS(KP250000000, T1j, T1g);
				   T2a = TQ + TT;
				   TU = FNMS(KP250000000, TT, TQ);
				   T28 = T26 * T27;
			      }
			      {
				   E T22, T1m, T1y, TW;
				   T22 = FMA(KP559016994, T1l, T1k);
				   T1m = FNMS(KP559016994, T1l, T1k);
				   T1y = FNMS(KP559016994, TV, TU);
				   TW = FMA(KP559016994, TV, TU);
				   T1q = FNMS(KP951056516, T1p, T1m);
				   T1K = FMA(KP951056516, T1p, T1m);
				   T24 = FNMS(KP951056516, T23, T22);
				   T2k = FMA(KP951056516, T23, T22);
				   T10 = FMA(KP951056516, TZ, TW);
				   T1Q = FNMS(KP951056516, TZ, TW);
				   T1A = FMA(KP951056516, T1z, T1y);
				   T2q = FNMS(KP951056516, T1z, T1y);
				   T29 = W[8];
			      }
			 }
			 Tv = FMA(KP559016994, Tu, Tt);
			 T1t = FNMS(KP559016994, Tu, Tt);
			 Tk = W[1];
			 TN = W[0];
			 T2c = T29 * T27;
			 T1N = FMA(KP951056516, TK, Tv);
			 TL = FNMS(KP951056516, TK, Tv);
			 T1M = W[17];
			 T1P = W[16];
			 T2w = TN * TL;
			 TM = Tk * TL;
			 T1O = T1M * T1N;
			 T1S = T1P * T1N;
			 T2n = FMA(KP951056516, T1u, T1t);
			 T1v = FNMS(KP951056516, T1u, T1t);
			 T1s = W[5];
			 T1x = W[4];
			 T2m = W[13];
			 T2p = W[12];
			 T1w = T1s * T1v;
			 T1C = T1x * T1v;
			 T2o = T2m * T2n;
			 T2s = T2p * T2n;
			 {
			      E T1X, T1d, T1H, T15, T2h, T1Z;
			      T1X = FMA(KP559016994, T14, T13);
			      T15 = FNMS(KP559016994, T14, T13);
			      T12 = W[2];
			      T1f = W[3];
			      T1G = W[14];
			      T1d = FMA(KP951056516, T1c, T15);
			      T1H = FNMS(KP951056516, T1c, T15);
			      T1J = W[15];
			      T1I = T1G * T1H;
			      T1E = T1f * T1d;
			      T1e = T12 * T1d;
			      T1U = T1J * T1H;
			      T2h = FNMS(KP951056516, T1Y, T1X);
			      T1Z = FMA(KP951056516, T1Y, T1X);
			      T1W = W[6];
			      T21 = W[7];
			      T2g = W[10];
			      T2j = W[11];
			      T20 = T1W * T1Z;
			      T2e = T21 * T1Z;
			      T2i = T2g * T2h;
			      T2u = T2j * T2h;
			 }
		    }
		    {
			 E T1D, T1F, T1L, T1R;
			 {
			      E T11, T2x, T1r, T1B;
			      T11 = FMA(TN, T10, TM);
			      T2x = FNMS(Tk, T10, T2w);
			      T1r = FNMS(T1f, T1q, T1e);
			      T1B = FMA(T1x, T1A, T1w);
			      Rm[0] = Tj + T11;
			      Rp[0] = Tj - T11;
			      Ip[0] = T2x + T2y;
			      Im[0] = T2x - T2y;
			      Rp[WS(rs, 1)] = T1r - T1B;
			      Rm[WS(rs, 1)] = T1B + T1r;
			      T1D = FNMS(T1s, T1A, T1C);
			      T1F = FMA(T12, T1q, T1E);
			      T1L = FNMS(T1J, T1K, T1I);
			      T1R = FMA(T1P, T1Q, T1O);
			 }
			 {
			      E T1T, T1V, T2t, T2v;
			      T1T = FNMS(T1M, T1Q, T1S);
			      Ip[WS(rs, 1)] = T1D + T1F;
			      Im[WS(rs, 1)] = T1D - T1F;
			      Rm[WS(rs, 4)] = T1R + T1L;
			      Rp[WS(rs, 4)] = T1L - T1R;
			      T1V = FMA(T1G, T1K, T1U);
			      T2t = FNMS(T2m, T2q, T2s);
			      T2v = FMA(T2g, T2k, T2u);
			      {
				   E T2l, T2r, T25, T2b;
				   T2l = FNMS(T2j, T2k, T2i);
				   Ip[WS(rs, 4)] = T1T + T1V;
				   Im[WS(rs, 4)] = T1T - T1V;
				   Ip[WS(rs, 3)] = T2t + T2v;
				   Im[WS(rs, 3)] = T2t - T2v;
				   T2r = FMA(T2p, T2q, T2o);
				   T25 = FNMS(T21, T24, T20);
				   T2b = FMA(T29, T2a, T28);
				   T2d = FNMS(T26, T2a, T2c);
				   Rm[WS(rs, 3)] = T2r + T2l;
				   Rp[WS(rs, 3)] = T2l - T2r;
				   Rm[WS(rs, 2)] = T2b + T25;
				   Rp[WS(rs, 2)] = T25 - T2b;
				   T2f = FMA(T1W, T24, T2e);
			      }
			 }
		    }
	       }
	  }
	  Ip[WS(rs, 2)] = T2d + T2f;
	  Im[WS(rs, 2)] = T2d - T2f;
     }
}

static const tw_instr twinstr[] = {
     {TW_FULL, 1, 10},
     {TW_NEXT, 1, 0}
};

static const hc2c_desc desc = { 10, "hc2cbdft_10", twinstr, &GENUS, {68, 18, 54, 0} };

void X(codelet_hc2cbdft_10) (planner *p) {
     X(khc2c_register) (p, hc2cbdft_10, &desc, HC2C_VIA_DFT);
}
#else				/* HAVE_FMA */

/* Generated by: ../../../genfft/gen_hc2cdft -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -dif -name hc2cbdft_10 -include hc2cb.h */

/*
 * This function contains 122 FP additions, 60 FP multiplications,
 * (or, 92 additions, 30 multiplications, 30 fused multiply/add),
 * 61 stack variables, 4 constants, and 40 memory accesses
 */
#include "hc2cb.h"

static void hc2cbdft_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
     DK(KP587785252, +0.587785252292473129168705954639072768597652438);
     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
     INT m;
     for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 18, MAKE_VOLATILE_STRIDE(rs)) {
	  E T3, TS, TR, T13, Ti, T12, TT, TU, T1g, T1T, Tr, T1s, TJ, T1h, TG;
	  E T1m, TK, TL, T1k, T1l, T1b, T1P, TY, T1w;
	  {
	       E Td, To, Tg, Tp, Th, TQ, T6, Tl, T9, Tm, Ta, TP, T1, T2;
	       T1 = Rp[0];
	       T2 = Rm[WS(rs, 4)];
	       T3 = T1 + T2;
	       TS = T1 - T2;
	       {
		    E Tb, Tc, Te, Tf;
		    Tb = Rp[WS(rs, 4)];
		    Tc = Rm[0];
		    Td = Tb + Tc;
		    To = Tb - Tc;
		    Te = Rm[WS(rs, 3)];
		    Tf = Rp[WS(rs, 1)];
		    Tg = Te + Tf;
		    Tp = Te - Tf;
	       }
	       Th = Td + Tg;
	       TQ = To + Tp;
	       {
		    E T4, T5, T7, T8;
		    T4 = Rp[WS(rs, 2)];
		    T5 = Rm[WS(rs, 2)];
		    T6 = T4 + T5;
		    Tl = T4 - T5;
		    T7 = Rm[WS(rs, 1)];
		    T8 = Rp[WS(rs, 3)];
		    T9 = T7 + T8;
		    Tm = T7 - T8;
	       }
	       Ta = T6 + T9;
	       TP = Tl + Tm;
	       TR = KP559016994 * (TP - TQ);
	       T13 = KP559016994 * (Ta - Th);
	       Ti = Ta + Th;
	       T12 = FNMS(KP250000000, Ti, T3);
	       TT = TP + TQ;
	       TU = FNMS(KP250000000, TT, TS);
	       {
		    E T1e, T1f, Tn, Tq;
		    T1e = T6 - T9;
		    T1f = Td - Tg;
		    T1g = FNMS(KP951056516, T1f, KP587785252 * T1e);
		    T1T = FMA(KP951056516, T1e, KP587785252 * T1f);
		    Tn = Tl - Tm;
		    Tq = To - Tp;
		    Tr = FMA(KP951056516, Tn, KP587785252 * Tq);
		    T1s = FNMS(KP951056516, Tq, KP587785252 * Tn);
	       }
	  }
	  {
	       E TB, T18, TE, T19, TF, T1j, Tu, T15, Tx, T16, Ty, T1i, TH, TI;
	       TH = Ip[0];
	       TI = Im[WS(rs, 4)];
	       TJ = TH + TI;
	       T1h = TH - TI;
	       {
		    E Tz, TA, TC, TD;
		    Tz = Ip[WS(rs, 4)];
		    TA = Im[0];
		    TB = Tz + TA;
		    T18 = Tz - TA;
		    TC = Im[WS(rs, 3)];
		    TD = Ip[WS(rs, 1)];
		    TE = TC + TD;
		    T19 = TD - TC;
	       }
	       TF = TB - TE;
	       T1j = T18 + T19;
	       {
		    E Ts, Tt, Tv, Tw;
		    Ts = Ip[WS(rs, 2)];
		    Tt = Im[WS(rs, 2)];
		    Tu = Ts + Tt;
		    T15 = Ts - Tt;
		    Tv = Im[WS(rs, 1)];
		    Tw = Ip[WS(rs, 3)];
		    Tx = Tv + Tw;
		    T16 = Tw - Tv;
	       }
	       Ty = Tu - Tx;
	       T1i = T15 + T16;
	       TG = KP559016994 * (Ty - TF);
	       T1m = KP559016994 * (T1i - T1j);
	       TK = Ty + TF;
	       TL = FNMS(KP250000000, TK, TJ);
	       T1k = T1i + T1j;
	       T1l = FNMS(KP250000000, T1k, T1h);
	       {
		    E T17, T1a, TW, TX;
		    T17 = T15 - T16;
		    T1a = T18 - T19;
		    T1b = FNMS(KP951056516, T1a, KP587785252 * T17);
		    T1P = FMA(KP951056516, T17, KP587785252 * T1a);
		    TW = Tu + Tx;
		    TX = TB + TE;
		    TY = FMA(KP951056516, TW, KP587785252 * TX);
		    T1w = FNMS(KP951056516, TX, KP587785252 * TW);
	       }
	  }
	  {
	       E Tj, T2g, TN, T1H, T1U, T26, TZ, T1J, T1Q, T24, T1c, T1C, T1t, T29, T1o;
	       E T1E, T1x, T2b, T20, T21, TM, T1S, TV;
	       Tj = T3 + Ti;
	       T2g = T1h + T1k;
	       TM = TG + TL;
	       TN = Tr + TM;
	       T1H = TM - Tr;
	       T1S = T1m + T1l;
	       T1U = T1S - T1T;
	       T26 = T1T + T1S;
	       TV = TR + TU;
	       TZ = TV - TY;
	       T1J = TV + TY;
	       {
		    E T1O, T14, T1r, T1n, T1v;
		    T1O = T13 + T12;
		    T1Q = T1O + T1P;
		    T24 = T1O - T1P;
		    T14 = T12 - T13;
		    T1c = T14 - T1b;
		    T1C = T14 + T1b;
		    T1r = TL - TG;
		    T1t = T1r - T1s;
		    T29 = T1s + T1r;
		    T1n = T1l - T1m;
		    T1o = T1g + T1n;
		    T1E = T1n - T1g;
		    T1v = TU - TR;
		    T1x = T1v + T1w;
		    T2b = T1v - T1w;
		    {
			 E T1X, T1Z, T1W, T1Y;
			 T1X = TS + TT;
			 T1Z = TJ + TK;
			 T1W = W[9];
			 T1Y = W[8];
			 T20 = FMA(T1W, T1X, T1Y * T1Z);
			 T21 = FNMS(T1W, T1Z, T1Y * T1X);
		    }
	       }
	       {
		    E T10, T2f, Tk, TO;
		    Tk = W[0];
		    TO = W[1];
		    T10 = FMA(Tk, TN, TO * TZ);
		    T2f = FNMS(TO, TN, Tk * TZ);
		    Rp[0] = Tj - T10;
		    Ip[0] = T2f + T2g;
		    Rm[0] = Tj + T10;
		    Im[0] = T2f - T2g;
	       }
	       {
		    E T1V, T22, T1N, T1R;
		    T1N = W[6];
		    T1R = W[7];
		    T1V = FNMS(T1R, T1U, T1N * T1Q);
		    T22 = FMA(T1R, T1Q, T1N * T1U);
		    Rp[WS(rs, 2)] = T1V - T20;
		    Ip[WS(rs, 2)] = T21 + T22;
		    Rm[WS(rs, 2)] = T20 + T1V;
		    Im[WS(rs, 2)] = T21 - T22;
	       }
	       {
		    E T1p, T1A, T1y, T1z;
		    {
			 E T11, T1d, T1q, T1u;
			 T11 = W[2];
			 T1d = W[3];
			 T1p = FNMS(T1d, T1o, T11 * T1c);
			 T1A = FMA(T1d, T1c, T11 * T1o);
			 T1q = W[4];
			 T1u = W[5];
			 T1y = FMA(T1q, T1t, T1u * T1x);
			 T1z = FNMS(T1u, T1t, T1q * T1x);
		    }
		    Rp[WS(rs, 1)] = T1p - T1y;
		    Ip[WS(rs, 1)] = T1z + T1A;
		    Rm[WS(rs, 1)] = T1y + T1p;
		    Im[WS(rs, 1)] = T1z - T1A;
	       }
	       {
		    E T1F, T1M, T1K, T1L;
		    {
			 E T1B, T1D, T1G, T1I;
			 T1B = W[14];
			 T1D = W[15];
			 T1F = FNMS(T1D, T1E, T1B * T1C);
			 T1M = FMA(T1D, T1C, T1B * T1E);
			 T1G = W[16];
			 T1I = W[17];
			 T1K = FMA(T1G, T1H, T1I * T1J);
			 T1L = FNMS(T1I, T1H, T1G * T1J);
		    }
		    Rp[WS(rs, 4)] = T1F - T1K;
		    Ip[WS(rs, 4)] = T1L + T1M;
		    Rm[WS(rs, 4)] = T1K + T1F;
		    Im[WS(rs, 4)] = T1L - T1M;
	       }
	       {
		    E T27, T2e, T2c, T2d;
		    {
			 E T23, T25, T28, T2a;
			 T23 = W[10];
			 T25 = W[11];
			 T27 = FNMS(T25, T26, T23 * T24);
			 T2e = FMA(T25, T24, T23 * T26);
			 T28 = W[12];
			 T2a = W[13];
			 T2c = FMA(T28, T29, T2a * T2b);
			 T2d = FNMS(T2a, T29, T28 * T2b);
		    }
		    Rp[WS(rs, 3)] = T27 - T2c;
		    Ip[WS(rs, 3)] = T2d + T2e;
		    Rm[WS(rs, 3)] = T2c + T27;
		    Im[WS(rs, 3)] = T2d - T2e;
	       }
	  }
     }
}

static const tw_instr twinstr[] = {
     {TW_FULL, 1, 10},
     {TW_NEXT, 1, 0}
};

static const hc2c_desc desc = { 10, "hc2cbdft_10", twinstr, &GENUS, {92, 30, 30, 0} };

void X(codelet_hc2cbdft_10) (planner *p) {
     X(khc2c_register) (p, hc2cbdft_10, &desc, HC2C_VIA_DFT);
}
#endif				/* HAVE_FMA */