view Lib/fftw-3.2.1/rdft/scalar/r2cb/hb_20.c @ 5:a6bfbc7cb449

Remove crap
author Geogaddi\David <d.m.ronan@qmul.ac.uk>
date Wed, 22 Jul 2015 14:58:31 +0100
parents 25bf17994ef1
children
line wrap: on
line source
/*
 * Copyright (c) 2003, 2007-8 Matteo Frigo
 * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Mon Feb  9 19:55:27 EST 2009 */

#include "codelet-rdft.h"

#ifdef HAVE_FMA

/* Generated by: ../../../genfft/gen_hc2hc -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -dif -name hb_20 -include hb.h */

/*
 * This function contains 246 FP additions, 148 FP multiplications,
 * (or, 136 additions, 38 multiplications, 110 fused multiply/add),
 * 101 stack variables, 4 constants, and 80 memory accesses
 */
#include "hb.h"

static void hb_20(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
{
     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
     DK(KP618033988, +0.618033988749894848204586834365638117720309180);
     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
     INT m;
     for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 38, MAKE_VOLATILE_STRIDE(rs)) {
	  E T1T, T1Q, T1P;
	  {
	       E T2W, T4e, T7, TE, T3z, T4z, T1t, T2l, T3a, T3G, T13, T33, T3H, T1i, T2g;
	       E T4H, T4G, T2d, T1B, T4u, T4B, T4A, T4r, T1A, T2s, T3l, T2t, T3s, T2o, T2q;
	       E T1w, T1y, TC, T29, T3E, T3C, T4n, T4l, TN, TL;
	       {
		    E T4, T2U, T3, T2V, T1s, T5, T1n, T1o;
		    {
			 E T1, T2, T1q, T1r;
			 T1 = cr[0];
			 T2 = ci[WS(rs, 9)];
			 T1q = ci[WS(rs, 14)];
			 T1r = cr[WS(rs, 15)];
			 T4 = cr[WS(rs, 5)];
			 T2U = T1 - T2;
			 T3 = T1 + T2;
			 T2V = T1q + T1r;
			 T1s = T1q - T1r;
			 T5 = ci[WS(rs, 4)];
			 T1n = ci[WS(rs, 19)];
			 T1o = cr[WS(rs, 10)];
		    }
		    {
			 E T3y, T6, T3x, T1p;
			 T2W = T2U + T2V;
			 T4e = T2U - T2V;
			 T3y = T4 - T5;
			 T6 = T4 + T5;
			 T3x = T1n + T1o;
			 T1p = T1n - T1o;
			 T7 = T3 + T6;
			 TE = T3 - T6;
			 T3z = T3x - T3y;
			 T4z = T3y + T3x;
			 T1t = T1p - T1s;
			 T2l = T1p + T1s;
		    }
	       }
	       {
		    E T2Z, T4f, Te, TF, T3o, T4p, T1a, T2b, TJ, TA, T4t, T3k, T4j, T39, T2f;
		    E T12, T32, T4g, Tl, TG, T3r, T4q, T1h, T2c, T36, T4i, Tt, TI, T3h, T4s;
		    E TV, T2e;
		    {
			 E Tb, T2X, Ta, T2Y, T19, Tc, T14, T15;
			 {
			      E T8, T9, T17, T18;
			      T8 = cr[WS(rs, 4)];
			      T9 = ci[WS(rs, 5)];
			      T17 = ci[WS(rs, 10)];
			      T18 = cr[WS(rs, 19)];
			      Tb = cr[WS(rs, 9)];
			      T2X = T8 - T9;
			      Ta = T8 + T9;
			      T2Y = T17 + T18;
			      T19 = T17 - T18;
			      Tc = ci[0];
			      T14 = ci[WS(rs, 15)];
			      T15 = cr[WS(rs, 14)];
			 }
			 {
			      E T3n, Td, T3m, T16;
			      T2Z = T2X + T2Y;
			      T4f = T2X - T2Y;
			      T3n = Tb - Tc;
			      Td = Tb + Tc;
			      T3m = T14 + T15;
			      T16 = T14 - T15;
			      Te = Ta + Td;
			      TF = Ta - Td;
			      T3o = T3m - T3n;
			      T4p = T3n + T3m;
			      T1a = T16 - T19;
			      T2b = T16 + T19;
			 }
		    }
		    {
			 E TW, T37, Tw, T3i, Tz, TX, TZ, T10;
			 {
			      E Tu, Tv, Tx, Ty;
			      Tu = ci[WS(rs, 7)];
			      Tv = cr[WS(rs, 2)];
			      Tx = ci[WS(rs, 2)];
			      Ty = cr[WS(rs, 7)];
			      TW = ci[WS(rs, 17)];
			      T37 = Tu - Tv;
			      Tw = Tu + Tv;
			      T3i = Tx - Ty;
			      Tz = Tx + Ty;
			      TX = cr[WS(rs, 12)];
			      TZ = ci[WS(rs, 12)];
			      T10 = cr[WS(rs, 17)];
			 }
			 {
			      E TY, T38, T11, T3j;
			      TJ = Tw - Tz;
			      TA = Tw + Tz;
			      T3j = TW + TX;
			      TY = TW - TX;
			      T38 = TZ + T10;
			      T11 = TZ - T10;
			      T4t = T3i - T3j;
			      T3k = T3i + T3j;
			      T4j = T37 + T38;
			      T39 = T37 - T38;
			      T2f = TY + T11;
			      T12 = TY - T11;
			 }
		    }
		    {
			 E Ti, T30, Th, T31, T1g, Tj, T1b, T1c;
			 {
			      E Tf, Tg, T1e, T1f;
			      Tf = ci[WS(rs, 3)];
			      Tg = cr[WS(rs, 6)];
			      T1e = ci[WS(rs, 18)];
			      T1f = cr[WS(rs, 11)];
			      Ti = cr[WS(rs, 1)];
			      T30 = Tf - Tg;
			      Th = Tf + Tg;
			      T31 = T1e + T1f;
			      T1g = T1e - T1f;
			      Tj = ci[WS(rs, 8)];
			      T1b = ci[WS(rs, 13)];
			      T1c = cr[WS(rs, 16)];
			 }
			 {
			      E T3p, Tk, T3q, T1d;
			      T32 = T30 + T31;
			      T4g = T30 - T31;
			      T3p = Ti - Tj;
			      Tk = Ti + Tj;
			      T3q = T1b + T1c;
			      T1d = T1b - T1c;
			      Tl = Th + Tk;
			      TG = Th - Tk;
			      T3r = T3p + T3q;
			      T4q = T3p - T3q;
			      T1h = T1d - T1g;
			      T2c = T1d + T1g;
			 }
		    }
		    {
			 E Tq, T34, Tp, T35, TU, Tr, TP, TQ;
			 {
			      E Tn, To, TS, TT;
			      Tn = cr[WS(rs, 8)];
			      To = ci[WS(rs, 1)];
			      TS = ci[WS(rs, 16)];
			      TT = cr[WS(rs, 13)];
			      Tq = ci[WS(rs, 6)];
			      T34 = Tn - To;
			      Tp = Tn + To;
			      T35 = TS + TT;
			      TU = TS - TT;
			      Tr = cr[WS(rs, 3)];
			      TP = ci[WS(rs, 11)];
			      TQ = cr[WS(rs, 18)];
			 }
			 {
			      E T3g, Ts, T3f, TR;
			      T36 = T34 - T35;
			      T4i = T34 + T35;
			      T3g = Tq - Tr;
			      Ts = Tq + Tr;
			      T3f = TP + TQ;
			      TR = TP - TQ;
			      Tt = Tp + Ts;
			      TI = Tp - Ts;
			      T3h = T3f - T3g;
			      T4s = T3g + T3f;
			      TV = TR - TU;
			      T2e = TR + TU;
			 }
		    }
		    {
			 E T1v, T1u, T2n, T4k, T4h, T2m, TH, TK;
			 T3a = T36 + T39;
			 T3G = T36 - T39;
			 T13 = TV - T12;
			 T1v = TV + T12;
			 T33 = T2Z + T32;
			 T3H = T2Z - T32;
			 T1i = T1a - T1h;
			 T1u = T1a + T1h;
			 T2n = T2e + T2f;
			 T2g = T2e - T2f;
			 T4H = T4i - T4j;
			 T4k = T4i + T4j;
			 T4h = T4f + T4g;
			 T4G = T4f - T4g;
			 T2d = T2b - T2c;
			 T2m = T2b + T2c;
			 TH = TF + TG;
			 T1B = TF - TG;
			 T4u = T4s - T4t;
			 T4B = T4s + T4t;
			 T4A = T4p + T4q;
			 T4r = T4p - T4q;
			 T1A = TI - TJ;
			 TK = TI + TJ;
			 {
			      E Tm, T3B, TB, T3A;
			      Tm = Te + Tl;
			      T2s = Te - Tl;
			      T3l = T3h + T3k;
			      T3B = T3h - T3k;
			      TB = Tt + TA;
			      T2t = Tt - TA;
			      T3s = T3o + T3r;
			      T3A = T3o - T3r;
			      T2o = T2m + T2n;
			      T2q = T2m - T2n;
			      T1w = T1u + T1v;
			      T1y = T1u - T1v;
			      TC = Tm + TB;
			      T29 = Tm - TB;
			      T3E = T3A - T3B;
			      T3C = T3A + T3B;
			      T4n = T4h - T4k;
			      T4l = T4h + T4k;
			      TN = TH - TK;
			      TL = TH + TK;
			 }
		    }
	       }
	       {
		    E T3d, T3b, T4E, T1x, TM, T4m, T58, T5b, T4D, T5a, T5c, T59, T4C;
		    cr[0] = T7 + TC;
		    T3d = T33 - T3a;
		    T3b = T33 + T3a;
		    T4E = T4A - T4B;
		    T4C = T4A + T4B;
		    ci[0] = T2l + T2o;
		    {
			 E T25, T22, T21, T24, T23, T26, T57;
			 T1x = FNMS(KP250000000, T1w, T1t);
			 T25 = T1t + T1w;
			 T22 = TE + TL;
			 TM = FNMS(KP250000000, TL, TE);
			 T21 = W[18];
			 T24 = W[19];
			 T4m = FNMS(KP250000000, T4l, T4e);
			 T58 = T4e + T4l;
			 T5b = T4z + T4C;
			 T4D = FNMS(KP250000000, T4C, T4z);
			 T23 = T21 * T22;
			 T26 = T24 * T22;
			 T57 = W[8];
			 T5a = W[9];
			 cr[WS(rs, 10)] = FNMS(T24, T25, T23);
			 ci[WS(rs, 10)] = FMA(T21, T25, T26);
			 T5c = T57 * T5b;
			 T59 = T57 * T58;
		    }
		    {
			 E T3U, T3Z, T3W, T40, T3V;
			 {
			      E T3c, T48, T4b, T3D, T47, T4a;
			      T3c = FNMS(KP250000000, T3b, T2W);
			      T48 = T2W + T3b;
			      T4b = T3z + T3C;
			      T3D = FNMS(KP250000000, T3C, T3z);
			      ci[WS(rs, 5)] = FMA(T5a, T58, T5c);
			      cr[WS(rs, 5)] = FNMS(T5a, T5b, T59);
			      T47 = W[28];
			      T4a = W[29];
			      {
				   E T3I, T3Y, T42, T3u, T3M, T3X, T3F;
				   {
					E T3T, T3t, T4c, T49, T3e, T3S;
					T3T = FMA(KP618033988, T3l, T3s);
					T3t = FNMS(KP618033988, T3s, T3l);
					T4c = T47 * T4b;
					T49 = T47 * T48;
					T3I = FNMS(KP618033988, T3H, T3G);
					T3Y = FMA(KP618033988, T3G, T3H);
					ci[WS(rs, 15)] = FMA(T4a, T48, T4c);
					cr[WS(rs, 15)] = FNMS(T4a, T4b, T49);
					T3e = FNMS(KP559016994, T3d, T3c);
					T3S = FMA(KP559016994, T3d, T3c);
					T42 = FMA(KP951056516, T3T, T3S);
					T3U = FNMS(KP951056516, T3T, T3S);
					T3u = FNMS(KP951056516, T3t, T3e);
					T3M = FMA(KP951056516, T3t, T3e);
					T3X = FMA(KP559016994, T3E, T3D);
					T3F = FNMS(KP559016994, T3E, T3D);
				   }
				   {
					E T3P, T45, T44, T46, T43;
					{
					     E T3w, T3J, T3v, T3K, T2T, T41;
					     T2T = W[4];
					     T3w = W[5];
					     T3J = FMA(KP951056516, T3I, T3F);
					     T3P = FNMS(KP951056516, T3I, T3F);
					     T45 = FNMS(KP951056516, T3Y, T3X);
					     T3Z = FMA(KP951056516, T3Y, T3X);
					     T3v = T2T * T3u;
					     T3K = T2T * T3J;
					     T41 = W[36];
					     T44 = W[37];
					     cr[WS(rs, 3)] = FNMS(T3w, T3J, T3v);
					     ci[WS(rs, 3)] = FMA(T3w, T3u, T3K);
					     T46 = T41 * T45;
					     T43 = T41 * T42;
					}
					{
					     E T3O, T3Q, T3N, T3L, T3R;
					     T3L = W[12];
					     T3O = W[13];
					     ci[WS(rs, 19)] = FMA(T44, T42, T46);
					     cr[WS(rs, 19)] = FNMS(T44, T45, T43);
					     T3Q = T3L * T3P;
					     T3N = T3L * T3M;
					     T3R = W[20];
					     T3W = W[21];
					     ci[WS(rs, 7)] = FMA(T3O, T3M, T3Q);
					     cr[WS(rs, 7)] = FNMS(T3O, T3P, T3N);
					     T40 = T3R * T3Z;
					     T3V = T3R * T3U;
					}
				   }
			      }
			 }
			 {
			      E T4U, T4Z, T4W, T50, T4V, T2L, T2I, T2H;
			      {
				   E T4T, T4v, T4I, T4Y, T4o, T4S;
				   T4T = FNMS(KP618033988, T4r, T4u);
				   T4v = FMA(KP618033988, T4u, T4r);
				   ci[WS(rs, 11)] = FMA(T3W, T3U, T40);
				   cr[WS(rs, 11)] = FNMS(T3W, T3Z, T3V);
				   T4I = FMA(KP618033988, T4H, T4G);
				   T4Y = FNMS(KP618033988, T4G, T4H);
				   T4o = FMA(KP559016994, T4n, T4m);
				   T4S = FNMS(KP559016994, T4n, T4m);
				   {
					E T52, T4M, T55, T4P, T54, T56, T53;
					{
					     E T4d, T4w, T4J, T4x, T4y, T4X, T4F, T51, T4K;
					     T4d = W[0];
					     T4X = FNMS(KP559016994, T4E, T4D);
					     T4F = FMA(KP559016994, T4E, T4D);
					     T4U = FNMS(KP951056516, T4T, T4S);
					     T52 = FMA(KP951056516, T4T, T4S);
					     T4M = FMA(KP951056516, T4v, T4o);
					     T4w = FNMS(KP951056516, T4v, T4o);
					     T4Z = FMA(KP951056516, T4Y, T4X);
					     T55 = FNMS(KP951056516, T4Y, T4X);
					     T4P = FNMS(KP951056516, T4I, T4F);
					     T4J = FMA(KP951056516, T4I, T4F);
					     T4x = T4d * T4w;
					     T4y = W[1];
					     T51 = W[32];
					     T4K = T4d * T4J;
					     T54 = W[33];
					     cr[WS(rs, 1)] = FNMS(T4y, T4J, T4x);
					     T56 = T51 * T55;
					     T53 = T51 * T52;
					     ci[WS(rs, 1)] = FMA(T4y, T4w, T4K);
					}
					{
					     E T4O, T4Q, T4N, T4L, T4R;
					     T4L = W[16];
					     ci[WS(rs, 17)] = FMA(T54, T52, T56);
					     cr[WS(rs, 17)] = FNMS(T54, T55, T53);
					     T4O = W[17];
					     T4Q = T4L * T4P;
					     T4N = T4L * T4M;
					     T4R = W[24];
					     T4W = W[25];
					     ci[WS(rs, 9)] = FMA(T4O, T4M, T4Q);
					     cr[WS(rs, 9)] = FNMS(T4O, T4P, T4N);
					     T50 = T4R * T4Z;
					     T4V = T4R * T4U;
					}
				   }
			      }
			      {
				   E T2K, T2u, T2F, T2h, T28, T2J, T2r, T2p;
				   T2K = FNMS(KP618033988, T2s, T2t);
				   T2u = FMA(KP618033988, T2t, T2s);
				   ci[WS(rs, 13)] = FMA(T4W, T4U, T50);
				   cr[WS(rs, 13)] = FNMS(T4W, T4Z, T4V);
				   T2p = FNMS(KP250000000, T2o, T2l);
				   T2F = FNMS(KP618033988, T2d, T2g);
				   T2h = FMA(KP618033988, T2g, T2d);
				   T28 = FNMS(KP250000000, TC, T7);
				   T2J = FNMS(KP559016994, T2q, T2p);
				   T2r = FMA(KP559016994, T2q, T2p);
				   {
					E T2B, T2G, T2y, T2R, T2Q, T2P, T2A, T2x;
					{
					     E T2k, T2v, T27, T2O, T2i, T2a, T2E;
					     T2k = W[7];
					     T2a = FMA(KP559016994, T29, T28);
					     T2E = FNMS(KP559016994, T29, T28);
					     T2B = FMA(KP951056516, T2u, T2r);
					     T2v = FNMS(KP951056516, T2u, T2r);
					     T27 = W[6];
					     T2O = FMA(KP951056516, T2F, T2E);
					     T2G = FNMS(KP951056516, T2F, T2E);
					     T2i = FMA(KP951056516, T2h, T2a);
					     T2y = FNMS(KP951056516, T2h, T2a);
					     {
						  E T2N, T2j, T2w, T2S;
						  T2L = FMA(KP951056516, T2K, T2J);
						  T2R = FNMS(KP951056516, T2K, T2J);
						  T2Q = W[23];
						  T2N = W[22];
						  T2j = T27 * T2i;
						  T2w = T2k * T2i;
						  T2S = T2Q * T2O;
						  T2P = T2N * T2O;
						  cr[WS(rs, 4)] = FNMS(T2k, T2v, T2j);
						  ci[WS(rs, 4)] = FMA(T27, T2v, T2w);
						  ci[WS(rs, 12)] = FMA(T2N, T2R, T2S);
					     }
					}
					cr[WS(rs, 12)] = FNMS(T2Q, T2R, T2P);
					T2A = W[31];
					T2x = W[30];
					{
					     E T2D, T2M, T2C, T2z;
					     T2I = W[15];
					     T2C = T2A * T2y;
					     T2z = T2x * T2y;
					     T2D = W[14];
					     T2M = T2I * T2G;
					     ci[WS(rs, 16)] = FMA(T2x, T2B, T2C);
					     cr[WS(rs, 16)] = FNMS(T2A, T2B, T2z);
					     T2H = T2D * T2G;
					     ci[WS(rs, 8)] = FMA(T2D, T2L, T2M);
					}
				   }
			      }
			      {
				   E T1S, T1C, T1j, T1N, T1z, T1R;
				   T1S = FMA(KP618033988, T1A, T1B);
				   T1C = FNMS(KP618033988, T1B, T1A);
				   cr[WS(rs, 8)] = FNMS(T2I, T2L, T2H);
				   T1j = FNMS(KP618033988, T1i, T13);
				   T1N = FMA(KP618033988, T13, T1i);
				   T1z = FNMS(KP559016994, T1y, T1x);
				   T1R = FMA(KP559016994, T1y, T1x);
				   {
					E T1J, T1O, T1G, T1Z, T1Y, T1X, T1I, T1F;
					{
					     E T1m, T1D, TD, T1W, T1k, T1M, TO;
					     T1m = W[3];
					     T1M = FMA(KP559016994, TN, TM);
					     TO = FNMS(KP559016994, TN, TM);
					     T1D = FNMS(KP951056516, T1C, T1z);
					     T1J = FMA(KP951056516, T1C, T1z);
					     TD = W[2];
					     T1O = FNMS(KP951056516, T1N, T1M);
					     T1W = FMA(KP951056516, T1N, T1M);
					     T1G = FNMS(KP951056516, T1j, TO);
					     T1k = FMA(KP951056516, T1j, TO);
					     {
						  E T1V, T1l, T1E, T20;
						  T1Z = FNMS(KP951056516, T1S, T1R);
						  T1T = FMA(KP951056516, T1S, T1R);
						  T1Y = W[27];
						  T1V = W[26];
						  T1l = TD * T1k;
						  T1E = T1m * T1k;
						  T20 = T1Y * T1W;
						  T1X = T1V * T1W;
						  cr[WS(rs, 2)] = FNMS(T1m, T1D, T1l);
						  ci[WS(rs, 2)] = FMA(TD, T1D, T1E);
						  ci[WS(rs, 14)] = FMA(T1V, T1Z, T20);
					     }
					}
					cr[WS(rs, 14)] = FNMS(T1Y, T1Z, T1X);
					T1I = W[35];
					T1F = W[34];
					{
					     E T1L, T1U, T1K, T1H;
					     T1Q = W[11];
					     T1K = T1I * T1G;
					     T1H = T1F * T1G;
					     T1L = W[10];
					     T1U = T1Q * T1O;
					     ci[WS(rs, 18)] = FMA(T1F, T1J, T1K);
					     cr[WS(rs, 18)] = FNMS(T1I, T1J, T1H);
					     T1P = T1L * T1O;
					     ci[WS(rs, 6)] = FMA(T1L, T1T, T1U);
					}
				   }
			      }
			 }
		    }
	       }
	  }
	  cr[WS(rs, 6)] = FNMS(T1Q, T1T, T1P);
     }
}

static const tw_instr twinstr[] = {
     {TW_FULL, 1, 20},
     {TW_NEXT, 1, 0}
};

static const hc2hc_desc desc = { 20, "hb_20", twinstr, &GENUS, {136, 38, 110, 0} };

void X(codelet_hb_20) (planner *p) {
     X(khc2hc_register) (p, hb_20, &desc);
}
#else				/* HAVE_FMA */

/* Generated by: ../../../genfft/gen_hc2hc -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -dif -name hb_20 -include hb.h */

/*
 * This function contains 246 FP additions, 124 FP multiplications,
 * (or, 184 additions, 62 multiplications, 62 fused multiply/add),
 * 97 stack variables, 4 constants, and 80 memory accesses
 */
#include "hb.h"

static void hb_20(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
{
     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
     DK(KP587785252, +0.587785252292473129168705954639072768597652438);
     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
     INT m;
     for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 38, MAKE_VOLATILE_STRIDE(rs)) {
	  E T7, T3T, T49, TE, T1v, T2T, T3g, T2d, T13, T3n, T3o, T1i, T26, T4e, T4d;
	  E T23, T1n, T42, T3Z, T1m, T2h, T2I, T2i, T2P, T30, T37, T38, Tm, TB, TC;
	  E T46, T47, T4a, T2a, T2b, T2e, T1w, T1x, T1y, T3O, T3R, T3U, T3h, T3i, T3j;
	  E TH, TK, TL;
	  {
	       E T3, T2R, T1u, T2S, T6, T3f, T1r, T3e;
	       {
		    E T1, T2, T1s, T1t;
		    T1 = cr[0];
		    T2 = ci[WS(rs, 9)];
		    T3 = T1 + T2;
		    T2R = T1 - T2;
		    T1s = ci[WS(rs, 14)];
		    T1t = cr[WS(rs, 15)];
		    T1u = T1s - T1t;
		    T2S = T1s + T1t;
	       }
	       {
		    E T4, T5, T1p, T1q;
		    T4 = cr[WS(rs, 5)];
		    T5 = ci[WS(rs, 4)];
		    T6 = T4 + T5;
		    T3f = T4 - T5;
		    T1p = ci[WS(rs, 19)];
		    T1q = cr[WS(rs, 10)];
		    T1r = T1p - T1q;
		    T3e = T1p + T1q;
	       }
	       T7 = T3 + T6;
	       T3T = T2R - T2S;
	       T49 = T3f + T3e;
	       TE = T3 - T6;
	       T1v = T1r - T1u;
	       T2T = T2R + T2S;
	       T3g = T3e - T3f;
	       T2d = T1r + T1u;
	  }
	  {
	       E Te, T3M, T3X, TF, TV, T2E, T2W, T21, TA, T3Q, T41, TJ, T1h, T2O, T36;
	       E T25, Tl, T3N, T3Y, TG, T12, T2H, T2Z, T22, Tt, T3P, T40, TI, T1a, T2L;
	       E T33, T24;
	       {
		    E Ta, T2U, TU, T2V, Td, T2D, TR, T2C;
		    {
			 E T8, T9, TS, TT;
			 T8 = cr[WS(rs, 4)];
			 T9 = ci[WS(rs, 5)];
			 Ta = T8 + T9;
			 T2U = T8 - T9;
			 TS = ci[WS(rs, 10)];
			 TT = cr[WS(rs, 19)];
			 TU = TS - TT;
			 T2V = TS + TT;
		    }
		    {
			 E Tb, Tc, TP, TQ;
			 Tb = cr[WS(rs, 9)];
			 Tc = ci[0];
			 Td = Tb + Tc;
			 T2D = Tb - Tc;
			 TP = ci[WS(rs, 15)];
			 TQ = cr[WS(rs, 14)];
			 TR = TP - TQ;
			 T2C = TP + TQ;
		    }
		    Te = Ta + Td;
		    T3M = T2U - T2V;
		    T3X = T2D + T2C;
		    TF = Ta - Td;
		    TV = TR - TU;
		    T2E = T2C - T2D;
		    T2W = T2U + T2V;
		    T21 = TR + TU;
	       }
	       {
		    E Tw, T34, Tz, T2M, T1d, T2N, T1g, T35;
		    {
			 E Tu, Tv, Tx, Ty;
			 Tu = ci[WS(rs, 7)];
			 Tv = cr[WS(rs, 2)];
			 Tw = Tu + Tv;
			 T34 = Tu - Tv;
			 Tx = ci[WS(rs, 2)];
			 Ty = cr[WS(rs, 7)];
			 Tz = Tx + Ty;
			 T2M = Tx - Ty;
		    }
		    {
			 E T1b, T1c, T1e, T1f;
			 T1b = ci[WS(rs, 17)];
			 T1c = cr[WS(rs, 12)];
			 T1d = T1b - T1c;
			 T2N = T1b + T1c;
			 T1e = ci[WS(rs, 12)];
			 T1f = cr[WS(rs, 17)];
			 T1g = T1e - T1f;
			 T35 = T1e + T1f;
		    }
		    TA = Tw + Tz;
		    T3Q = T34 + T35;
		    T41 = T2M - T2N;
		    TJ = Tw - Tz;
		    T1h = T1d - T1g;
		    T2O = T2M + T2N;
		    T36 = T34 - T35;
		    T25 = T1d + T1g;
	       }
	       {
		    E Th, T2X, T11, T2Y, Tk, T2F, TY, T2G;
		    {
			 E Tf, Tg, TZ, T10;
			 Tf = ci[WS(rs, 3)];
			 Tg = cr[WS(rs, 6)];
			 Th = Tf + Tg;
			 T2X = Tf - Tg;
			 TZ = ci[WS(rs, 18)];
			 T10 = cr[WS(rs, 11)];
			 T11 = TZ - T10;
			 T2Y = TZ + T10;
		    }
		    {
			 E Ti, Tj, TW, TX;
			 Ti = cr[WS(rs, 1)];
			 Tj = ci[WS(rs, 8)];
			 Tk = Ti + Tj;
			 T2F = Ti - Tj;
			 TW = ci[WS(rs, 13)];
			 TX = cr[WS(rs, 16)];
			 TY = TW - TX;
			 T2G = TW + TX;
		    }
		    Tl = Th + Tk;
		    T3N = T2X - T2Y;
		    T3Y = T2F - T2G;
		    TG = Th - Tk;
		    T12 = TY - T11;
		    T2H = T2F + T2G;
		    T2Z = T2X + T2Y;
		    T22 = TY + T11;
	       }
	       {
		    E Tp, T31, T19, T32, Ts, T2K, T16, T2J;
		    {
			 E Tn, To, T17, T18;
			 Tn = cr[WS(rs, 8)];
			 To = ci[WS(rs, 1)];
			 Tp = Tn + To;
			 T31 = Tn - To;
			 T17 = ci[WS(rs, 16)];
			 T18 = cr[WS(rs, 13)];
			 T19 = T17 - T18;
			 T32 = T17 + T18;
		    }
		    {
			 E Tq, Tr, T14, T15;
			 Tq = ci[WS(rs, 6)];
			 Tr = cr[WS(rs, 3)];
			 Ts = Tq + Tr;
			 T2K = Tq - Tr;
			 T14 = ci[WS(rs, 11)];
			 T15 = cr[WS(rs, 18)];
			 T16 = T14 - T15;
			 T2J = T14 + T15;
		    }
		    Tt = Tp + Ts;
		    T3P = T31 + T32;
		    T40 = T2K + T2J;
		    TI = Tp - Ts;
		    T1a = T16 - T19;
		    T2L = T2J - T2K;
		    T33 = T31 - T32;
		    T24 = T16 + T19;
	       }
	       T13 = TV - T12;
	       T3n = T2W - T2Z;
	       T3o = T33 - T36;
	       T1i = T1a - T1h;
	       T26 = T24 - T25;
	       T4e = T3P - T3Q;
	       T4d = T3M - T3N;
	       T23 = T21 - T22;
	       T1n = TI - TJ;
	       T42 = T40 - T41;
	       T3Z = T3X - T3Y;
	       T1m = TF - TG;
	       T2h = Te - Tl;
	       T2I = T2E + T2H;
	       T2i = Tt - TA;
	       T2P = T2L + T2O;
	       T30 = T2W + T2Z;
	       T37 = T33 + T36;
	       T38 = T30 + T37;
	       Tm = Te + Tl;
	       TB = Tt + TA;
	       TC = Tm + TB;
	       T46 = T3X + T3Y;
	       T47 = T40 + T41;
	       T4a = T46 + T47;
	       T2a = T21 + T22;
	       T2b = T24 + T25;
	       T2e = T2a + T2b;
	       T1w = TV + T12;
	       T1x = T1a + T1h;
	       T1y = T1w + T1x;
	       T3O = T3M + T3N;
	       T3R = T3P + T3Q;
	       T3U = T3O + T3R;
	       T3h = T2E - T2H;
	       T3i = T2L - T2O;
	       T3j = T3h + T3i;
	       TH = TF + TG;
	       TK = TI + TJ;
	       TL = TH + TK;
	  }
	  cr[0] = T7 + TC;
	  ci[0] = T2d + T2e;
	  {
	       E T1U, T1W, T1T, T1V;
	       T1U = TE + TL;
	       T1W = T1v + T1y;
	       T1T = W[18];
	       T1V = W[19];
	       cr[WS(rs, 10)] = FNMS(T1V, T1W, T1T * T1U);
	       ci[WS(rs, 10)] = FMA(T1V, T1U, T1T * T1W);
	  }
	  {
	       E T4y, T4A, T4x, T4z;
	       T4y = T3T + T3U;
	       T4A = T49 + T4a;
	       T4x = W[8];
	       T4z = W[9];
	       cr[WS(rs, 5)] = FNMS(T4z, T4A, T4x * T4y);
	       ci[WS(rs, 5)] = FMA(T4x, T4A, T4z * T4y);
	  }
	  {
	       E T3I, T3K, T3H, T3J;
	       T3I = T2T + T38;
	       T3K = T3g + T3j;
	       T3H = W[28];
	       T3J = W[29];
	       cr[WS(rs, 15)] = FNMS(T3J, T3K, T3H * T3I);
	       ci[WS(rs, 15)] = FMA(T3H, T3K, T3J * T3I);
	  }
	  {
	       E T27, T2j, T2v, T2r, T2g, T2u, T20, T2q;
	       T27 = FMA(KP951056516, T23, KP587785252 * T26);
	       T2j = FMA(KP951056516, T2h, KP587785252 * T2i);
	       T2v = FNMS(KP951056516, T2i, KP587785252 * T2h);
	       T2r = FNMS(KP951056516, T26, KP587785252 * T23);
	       {
		    E T2c, T2f, T1Y, T1Z;
		    T2c = KP559016994 * (T2a - T2b);
		    T2f = FNMS(KP250000000, T2e, T2d);
		    T2g = T2c + T2f;
		    T2u = T2f - T2c;
		    T1Y = KP559016994 * (Tm - TB);
		    T1Z = FNMS(KP250000000, TC, T7);
		    T20 = T1Y + T1Z;
		    T2q = T1Z - T1Y;
	       }
	       {
		    E T28, T2k, T1X, T29;
		    T28 = T20 + T27;
		    T2k = T2g - T2j;
		    T1X = W[6];
		    T29 = W[7];
		    cr[WS(rs, 4)] = FNMS(T29, T2k, T1X * T28);
		    ci[WS(rs, 4)] = FMA(T29, T28, T1X * T2k);
	       }
	       {
		    E T2y, T2A, T2x, T2z;
		    T2y = T2q - T2r;
		    T2A = T2v + T2u;
		    T2x = W[22];
		    T2z = W[23];
		    cr[WS(rs, 12)] = FNMS(T2z, T2A, T2x * T2y);
		    ci[WS(rs, 12)] = FMA(T2z, T2y, T2x * T2A);
	       }
	       {
		    E T2m, T2o, T2l, T2n;
		    T2m = T20 - T27;
		    T2o = T2j + T2g;
		    T2l = W[30];
		    T2n = W[31];
		    cr[WS(rs, 16)] = FNMS(T2n, T2o, T2l * T2m);
		    ci[WS(rs, 16)] = FMA(T2n, T2m, T2l * T2o);
	       }
	       {
		    E T2s, T2w, T2p, T2t;
		    T2s = T2q + T2r;
		    T2w = T2u - T2v;
		    T2p = W[14];
		    T2t = W[15];
		    cr[WS(rs, 8)] = FNMS(T2t, T2w, T2p * T2s);
		    ci[WS(rs, 8)] = FMA(T2t, T2s, T2p * T2w);
	       }
	  }
	  {
	       E T43, T4f, T4r, T4m, T4c, T4q, T3W, T4n;
	       T43 = FMA(KP951056516, T3Z, KP587785252 * T42);
	       T4f = FMA(KP951056516, T4d, KP587785252 * T4e);
	       T4r = FNMS(KP951056516, T4e, KP587785252 * T4d);
	       T4m = FNMS(KP951056516, T42, KP587785252 * T3Z);
	       {
		    E T48, T4b, T3S, T3V;
		    T48 = KP559016994 * (T46 - T47);
		    T4b = FNMS(KP250000000, T4a, T49);
		    T4c = T48 + T4b;
		    T4q = T4b - T48;
		    T3S = KP559016994 * (T3O - T3R);
		    T3V = FNMS(KP250000000, T3U, T3T);
		    T3W = T3S + T3V;
		    T4n = T3V - T3S;
	       }
	       {
		    E T44, T4g, T3L, T45;
		    T44 = T3W - T43;
		    T4g = T4c + T4f;
		    T3L = W[0];
		    T45 = W[1];
		    cr[WS(rs, 1)] = FNMS(T45, T4g, T3L * T44);
		    ci[WS(rs, 1)] = FMA(T3L, T4g, T45 * T44);
	       }
	       {
		    E T4u, T4w, T4t, T4v;
		    T4u = T4n - T4m;
		    T4w = T4q + T4r;
		    T4t = W[32];
		    T4v = W[33];
		    cr[WS(rs, 17)] = FNMS(T4v, T4w, T4t * T4u);
		    ci[WS(rs, 17)] = FMA(T4t, T4w, T4v * T4u);
	       }
	       {
		    E T4i, T4k, T4h, T4j;
		    T4i = T43 + T3W;
		    T4k = T4c - T4f;
		    T4h = W[16];
		    T4j = W[17];
		    cr[WS(rs, 9)] = FNMS(T4j, T4k, T4h * T4i);
		    ci[WS(rs, 9)] = FMA(T4h, T4k, T4j * T4i);
	       }
	       {
		    E T4o, T4s, T4l, T4p;
		    T4o = T4m + T4n;
		    T4s = T4q - T4r;
		    T4l = W[24];
		    T4p = W[25];
		    cr[WS(rs, 13)] = FNMS(T4p, T4s, T4l * T4o);
		    ci[WS(rs, 13)] = FMA(T4l, T4s, T4p * T4o);
	       }
	  }
	  {
	       E T1j, T1o, T1M, T1J, T1B, T1N, TO, T1I;
	       T1j = FNMS(KP951056516, T1i, KP587785252 * T13);
	       T1o = FNMS(KP951056516, T1n, KP587785252 * T1m);
	       T1M = FMA(KP951056516, T1m, KP587785252 * T1n);
	       T1J = FMA(KP951056516, T13, KP587785252 * T1i);
	       {
		    E T1z, T1A, TM, TN;
		    T1z = FNMS(KP250000000, T1y, T1v);
		    T1A = KP559016994 * (T1w - T1x);
		    T1B = T1z - T1A;
		    T1N = T1A + T1z;
		    TM = FNMS(KP250000000, TL, TE);
		    TN = KP559016994 * (TH - TK);
		    TO = TM - TN;
		    T1I = TN + TM;
	       }
	       {
		    E T1k, T1C, TD, T1l;
		    T1k = TO - T1j;
		    T1C = T1o + T1B;
		    TD = W[2];
		    T1l = W[3];
		    cr[WS(rs, 2)] = FNMS(T1l, T1C, TD * T1k);
		    ci[WS(rs, 2)] = FMA(T1l, T1k, TD * T1C);
	       }
	       {
		    E T1Q, T1S, T1P, T1R;
		    T1Q = T1I + T1J;
		    T1S = T1N - T1M;
		    T1P = W[26];
		    T1R = W[27];
		    cr[WS(rs, 14)] = FNMS(T1R, T1S, T1P * T1Q);
		    ci[WS(rs, 14)] = FMA(T1R, T1Q, T1P * T1S);
	       }
	       {
		    E T1E, T1G, T1D, T1F;
		    T1E = TO + T1j;
		    T1G = T1B - T1o;
		    T1D = W[34];
		    T1F = W[35];
		    cr[WS(rs, 18)] = FNMS(T1F, T1G, T1D * T1E);
		    ci[WS(rs, 18)] = FMA(T1F, T1E, T1D * T1G);
	       }
	       {
		    E T1K, T1O, T1H, T1L;
		    T1K = T1I - T1J;
		    T1O = T1M + T1N;
		    T1H = W[10];
		    T1L = W[11];
		    cr[WS(rs, 6)] = FNMS(T1L, T1O, T1H * T1K);
		    ci[WS(rs, 6)] = FMA(T1L, T1K, T1H * T1O);
	       }
	  }
	  {
	       E T2Q, T3p, T3B, T3x, T3m, T3A, T3b, T3w;
	       T2Q = FNMS(KP951056516, T2P, KP587785252 * T2I);
	       T3p = FNMS(KP951056516, T3o, KP587785252 * T3n);
	       T3B = FMA(KP951056516, T3n, KP587785252 * T3o);
	       T3x = FMA(KP951056516, T2I, KP587785252 * T2P);
	       {
		    E T3k, T3l, T39, T3a;
		    T3k = FNMS(KP250000000, T3j, T3g);
		    T3l = KP559016994 * (T3h - T3i);
		    T3m = T3k - T3l;
		    T3A = T3l + T3k;
		    T39 = FNMS(KP250000000, T38, T2T);
		    T3a = KP559016994 * (T30 - T37);
		    T3b = T39 - T3a;
		    T3w = T3a + T39;
	       }
	       {
		    E T3c, T3q, T2B, T3d;
		    T3c = T2Q + T3b;
		    T3q = T3m - T3p;
		    T2B = W[4];
		    T3d = W[5];
		    cr[WS(rs, 3)] = FNMS(T3d, T3q, T2B * T3c);
		    ci[WS(rs, 3)] = FMA(T2B, T3q, T3d * T3c);
	       }
	       {
		    E T3E, T3G, T3D, T3F;
		    T3E = T3x + T3w;
		    T3G = T3A - T3B;
		    T3D = W[36];
		    T3F = W[37];
		    cr[WS(rs, 19)] = FNMS(T3F, T3G, T3D * T3E);
		    ci[WS(rs, 19)] = FMA(T3D, T3G, T3F * T3E);
	       }
	       {
		    E T3s, T3u, T3r, T3t;
		    T3s = T3b - T2Q;
		    T3u = T3m + T3p;
		    T3r = W[12];
		    T3t = W[13];
		    cr[WS(rs, 7)] = FNMS(T3t, T3u, T3r * T3s);
		    ci[WS(rs, 7)] = FMA(T3r, T3u, T3t * T3s);
	       }
	       {
		    E T3y, T3C, T3v, T3z;
		    T3y = T3w - T3x;
		    T3C = T3A + T3B;
		    T3v = W[20];
		    T3z = W[21];
		    cr[WS(rs, 11)] = FNMS(T3z, T3C, T3v * T3y);
		    ci[WS(rs, 11)] = FMA(T3v, T3C, T3z * T3y);
	       }
	  }
     }
}

static const tw_instr twinstr[] = {
     {TW_FULL, 1, 20},
     {TW_NEXT, 1, 0}
};

static const hc2hc_desc desc = { 20, "hb_20", twinstr, &GENUS, {184, 62, 62, 0} };

void X(codelet_hb_20) (planner *p) {
     X(khc2hc_register) (p, hb_20, &desc);
}
#endif				/* HAVE_FMA */