view Lib/fftw-3.2.1/dft/scalar/codelets/t1_20.c @ 5:a6bfbc7cb449

Remove crap
author Geogaddi\David <d.m.ronan@qmul.ac.uk>
date Wed, 22 Jul 2015 14:58:31 +0100
parents 25bf17994ef1
children
line wrap: on
line source
/*
 * Copyright (c) 2003, 2007-8 Matteo Frigo
 * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Mon Feb  9 19:51:01 EST 2009 */

#include "codelet-dft.h"

#ifdef HAVE_FMA

/* Generated by: ../../../genfft/gen_twiddle -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 20 -name t1_20 -include t.h */

/*
 * This function contains 246 FP additions, 148 FP multiplications,
 * (or, 136 additions, 38 multiplications, 110 fused multiply/add),
 * 97 stack variables, 4 constants, and 80 memory accesses
 */
#include "t.h"

static void t1_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
{
     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
     DK(KP618033988, +0.618033988749894848204586834365638117720309180);
     INT m;
     for (m = mb, W = W + (mb * 38); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 38, MAKE_VOLATILE_STRIDE(rs)) {
	  E T4P, T4Y, T50, T4U, T4S, T4T, T4Z, T4V;
	  {
	       E T4N, T4r, T8, T2i, T4n, T2n, T4O, Tl, T2v, T3v, T40, T4b, TN, T2b, T3F;
	       E T3i, T2R, T3z, T3W, T4f, T27, T2f, T3J, T3a, T2K, T3y, T3T, T4e, T1G, T2e;
	       E T3I, T33, T2C, T3w, T43, T4c, T1e, T2c, T3G, T3p;
	       {
		    E T1, T4q, T3, T6, T2, T5;
		    T1 = ri[0];
		    T4q = ii[0];
		    T3 = ri[WS(rs, 10)];
		    T6 = ii[WS(rs, 10)];
		    T2 = W[18];
		    T5 = W[19];
		    {
			 E Ta, Td, Tg, T2j, Tb, Tj, Tf, Tc, Ti;
			 {
			      E T4o, T4, T9, T4p, T7;
			      Ta = ri[WS(rs, 5)];
			      Td = ii[WS(rs, 5)];
			      T4o = T2 * T6;
			      T4 = T2 * T3;
			      T9 = W[8];
			      Tg = ri[WS(rs, 15)];
			      T4p = FNMS(T5, T3, T4o);
			      T7 = FMA(T5, T6, T4);
			      T2j = T9 * Td;
			      Tb = T9 * Ta;
			      T4N = T4q - T4p;
			      T4r = T4p + T4q;
			      T8 = T1 + T7;
			      T2i = T1 - T7;
			      Tj = ii[WS(rs, 15)];
			      Tf = W[28];
			 }
			 Tc = W[9];
			 Ti = W[29];
			 {
			      E T3d, Ts, T2t, TL, TB, TE, TD, T3f, Ty, T2q, TC;
			      {
				   E TH, TK, TJ, T2s, TI;
				   {
					E To, Tr, Tp, T3c, Tq, TG;
					{
					     E T2k, Te, T2m, Tk, T2l, Th, Tn;
					     To = ri[WS(rs, 4)];
					     T2l = Tf * Tj;
					     Th = Tf * Tg;
					     T2k = FNMS(Tc, Ta, T2j);
					     Te = FMA(Tc, Td, Tb);
					     T2m = FNMS(Ti, Tg, T2l);
					     Tk = FMA(Ti, Tj, Th);
					     Tr = ii[WS(rs, 4)];
					     Tn = W[6];
					     T4n = T2k + T2m;
					     T2n = T2k - T2m;
					     T4O = Te - Tk;
					     Tl = Te + Tk;
					     Tp = Tn * To;
					     T3c = Tn * Tr;
					}
					Tq = W[7];
					TH = ri[WS(rs, 19)];
					TK = ii[WS(rs, 19)];
					TG = W[36];
					T3d = FNMS(Tq, To, T3c);
					Ts = FMA(Tq, Tr, Tp);
					TJ = W[37];
					T2s = TG * TK;
					TI = TG * TH;
				   }
				   {
					E Tu, Tx, Tt, Tw, T3e, Tv, TA;
					Tu = ri[WS(rs, 14)];
					Tx = ii[WS(rs, 14)];
					T2t = FNMS(TJ, TH, T2s);
					TL = FMA(TJ, TK, TI);
					Tt = W[26];
					Tw = W[27];
					TB = ri[WS(rs, 9)];
					TE = ii[WS(rs, 9)];
					T3e = Tt * Tx;
					Tv = Tt * Tu;
					TA = W[16];
					TD = W[17];
					T3f = FNMS(Tw, Tu, T3e);
					Ty = FMA(Tw, Tx, Tv);
					T2q = TA * TE;
					TC = TA * TB;
				   }
			      }
			      {
				   E T3g, T3Y, Tz, T2p, T2r, TF;
				   T3g = T3d - T3f;
				   T3Y = T3d + T3f;
				   Tz = Ts + Ty;
				   T2p = Ts - Ty;
				   T2r = FNMS(TD, TB, T2q);
				   TF = FMA(TD, TE, TC);
				   {
					E T3Z, T2u, T3h, TM;
					T3Z = T2r + T2t;
					T2u = T2r - T2t;
					T3h = TF - TL;
					TM = TF + TL;
					T2v = T2p - T2u;
					T3v = T2p + T2u;
					T40 = T3Y - T3Z;
					T4b = T3Y + T3Z;
					TN = Tz - TM;
					T2b = Tz + TM;
					T3F = T3g - T3h;
					T3i = T3g + T3h;
				   }
			      }
			 }
		    }
	       }
	       {
		    E T35, T1M, T2P, T25, T1V, T1Y, T1X, T37, T1S, T2M, T1W;
		    {
			 E T21, T24, T23, T2O, T22;
			 {
			      E T1I, T1L, T1H, T1K, T34, T1J, T20;
			      T1I = ri[WS(rs, 12)];
			      T1L = ii[WS(rs, 12)];
			      T1H = W[22];
			      T1K = W[23];
			      T21 = ri[WS(rs, 7)];
			      T24 = ii[WS(rs, 7)];
			      T34 = T1H * T1L;
			      T1J = T1H * T1I;
			      T20 = W[12];
			      T23 = W[13];
			      T35 = FNMS(T1K, T1I, T34);
			      T1M = FMA(T1K, T1L, T1J);
			      T2O = T20 * T24;
			      T22 = T20 * T21;
			 }
			 {
			      E T1O, T1R, T1N, T1Q, T36, T1P, T1U;
			      T1O = ri[WS(rs, 2)];
			      T1R = ii[WS(rs, 2)];
			      T2P = FNMS(T23, T21, T2O);
			      T25 = FMA(T23, T24, T22);
			      T1N = W[2];
			      T1Q = W[3];
			      T1V = ri[WS(rs, 17)];
			      T1Y = ii[WS(rs, 17)];
			      T36 = T1N * T1R;
			      T1P = T1N * T1O;
			      T1U = W[32];
			      T1X = W[33];
			      T37 = FNMS(T1Q, T1O, T36);
			      T1S = FMA(T1Q, T1R, T1P);
			      T2M = T1U * T1Y;
			      T1W = T1U * T1V;
			 }
		    }
		    {
			 E T38, T3U, T1T, T2L, T2N, T1Z;
			 T38 = T35 - T37;
			 T3U = T35 + T37;
			 T1T = T1M + T1S;
			 T2L = T1M - T1S;
			 T2N = FNMS(T1X, T1V, T2M);
			 T1Z = FMA(T1X, T1Y, T1W);
			 {
			      E T3V, T2Q, T39, T26;
			      T3V = T2N + T2P;
			      T2Q = T2N - T2P;
			      T39 = T1Z - T25;
			      T26 = T1Z + T25;
			      T2R = T2L - T2Q;
			      T3z = T2L + T2Q;
			      T3W = T3U - T3V;
			      T4f = T3U + T3V;
			      T27 = T1T - T26;
			      T2f = T1T + T26;
			      T3J = T38 - T39;
			      T3a = T38 + T39;
			 }
		    }
	       }
	       {
		    E T2Y, T1l, T2I, T1E, T1u, T1x, T1w, T30, T1r, T2F, T1v;
		    {
			 E T1A, T1D, T1C, T2H, T1B;
			 {
			      E T1h, T1k, T1g, T1j, T2X, T1i, T1z;
			      T1h = ri[WS(rs, 8)];
			      T1k = ii[WS(rs, 8)];
			      T1g = W[14];
			      T1j = W[15];
			      T1A = ri[WS(rs, 3)];
			      T1D = ii[WS(rs, 3)];
			      T2X = T1g * T1k;
			      T1i = T1g * T1h;
			      T1z = W[4];
			      T1C = W[5];
			      T2Y = FNMS(T1j, T1h, T2X);
			      T1l = FMA(T1j, T1k, T1i);
			      T2H = T1z * T1D;
			      T1B = T1z * T1A;
			 }
			 {
			      E T1n, T1q, T1m, T1p, T2Z, T1o, T1t;
			      T1n = ri[WS(rs, 18)];
			      T1q = ii[WS(rs, 18)];
			      T2I = FNMS(T1C, T1A, T2H);
			      T1E = FMA(T1C, T1D, T1B);
			      T1m = W[34];
			      T1p = W[35];
			      T1u = ri[WS(rs, 13)];
			      T1x = ii[WS(rs, 13)];
			      T2Z = T1m * T1q;
			      T1o = T1m * T1n;
			      T1t = W[24];
			      T1w = W[25];
			      T30 = FNMS(T1p, T1n, T2Z);
			      T1r = FMA(T1p, T1q, T1o);
			      T2F = T1t * T1x;
			      T1v = T1t * T1u;
			 }
		    }
		    {
			 E T31, T3R, T1s, T2E, T2G, T1y;
			 T31 = T2Y - T30;
			 T3R = T2Y + T30;
			 T1s = T1l + T1r;
			 T2E = T1l - T1r;
			 T2G = FNMS(T1w, T1u, T2F);
			 T1y = FMA(T1w, T1x, T1v);
			 {
			      E T3S, T2J, T32, T1F;
			      T3S = T2G + T2I;
			      T2J = T2G - T2I;
			      T32 = T1y - T1E;
			      T1F = T1y + T1E;
			      T2K = T2E - T2J;
			      T3y = T2E + T2J;
			      T3T = T3R - T3S;
			      T4e = T3R + T3S;
			      T1G = T1s - T1F;
			      T2e = T1s + T1F;
			      T3I = T31 - T32;
			      T33 = T31 + T32;
			 }
		    }
	       }
	       {
		    E T3k, TT, T2A, T1c, T12, T15, T14, T3m, TZ, T2x, T13;
		    {
			 E T18, T1b, T1a, T2z, T19;
			 {
			      E TP, TS, TO, TR, T3j, TQ, T17;
			      TP = ri[WS(rs, 16)];
			      TS = ii[WS(rs, 16)];
			      TO = W[30];
			      TR = W[31];
			      T18 = ri[WS(rs, 11)];
			      T1b = ii[WS(rs, 11)];
			      T3j = TO * TS;
			      TQ = TO * TP;
			      T17 = W[20];
			      T1a = W[21];
			      T3k = FNMS(TR, TP, T3j);
			      TT = FMA(TR, TS, TQ);
			      T2z = T17 * T1b;
			      T19 = T17 * T18;
			 }
			 {
			      E TV, TY, TU, TX, T3l, TW, T11;
			      TV = ri[WS(rs, 6)];
			      TY = ii[WS(rs, 6)];
			      T2A = FNMS(T1a, T18, T2z);
			      T1c = FMA(T1a, T1b, T19);
			      TU = W[10];
			      TX = W[11];
			      T12 = ri[WS(rs, 1)];
			      T15 = ii[WS(rs, 1)];
			      T3l = TU * TY;
			      TW = TU * TV;
			      T11 = W[0];
			      T14 = W[1];
			      T3m = FNMS(TX, TV, T3l);
			      TZ = FMA(TX, TY, TW);
			      T2x = T11 * T15;
			      T13 = T11 * T12;
			 }
		    }
		    {
			 E T3n, T41, T10, T2w, T2y, T16;
			 T3n = T3k - T3m;
			 T41 = T3k + T3m;
			 T10 = TT + TZ;
			 T2w = TT - TZ;
			 T2y = FNMS(T14, T12, T2x);
			 T16 = FMA(T14, T15, T13);
			 {
			      E T42, T2B, T3o, T1d;
			      T42 = T2y + T2A;
			      T2B = T2y - T2A;
			      T3o = T16 - T1c;
			      T1d = T16 + T1c;
			      T2C = T2w - T2B;
			      T3w = T2w + T2B;
			      T43 = T41 - T42;
			      T4c = T41 + T42;
			      T1e = T10 - T1d;
			      T2c = T10 + T1d;
			      T3G = T3n - T3o;
			      T3p = T3n + T3o;
			 }
		    }
	       }
	       {
		    E T4s, T4k, T4l, T4h, T4j, T49, T4y, T4A, T48;
		    {
			 E T4D, T4C, T2a, T47, T45, T4B, T4M, T4K, T46, T3Q;
			 {
			      E Tm, T1f, T4J, T4I, T28, T3X, T44, T29, T3P, T3O;
			      T4D = T3T + T3W;
			      T3X = T3T - T3W;
			      T44 = T40 - T43;
			      T4C = T40 + T43;
			      T2a = T8 + Tl;
			      Tm = T8 - Tl;
			      T1f = TN + T1e;
			      T4J = TN - T1e;
			      T4I = T1G - T27;
			      T28 = T1G + T27;
			      T47 = FMA(KP618033988, T3X, T44);
			      T45 = FNMS(KP618033988, T44, T3X);
			      T29 = T1f + T28;
			      T3P = T1f - T28;
			      T4B = T4r - T4n;
			      T4s = T4n + T4r;
			      ri[WS(rs, 10)] = Tm + T29;
			      T3O = FNMS(KP250000000, T29, Tm);
			      T4M = FMA(KP618033988, T4I, T4J);
			      T4K = FNMS(KP618033988, T4J, T4I);
			      T46 = FMA(KP559016994, T3P, T3O);
			      T3Q = FNMS(KP559016994, T3P, T3O);
			 }
			 {
			      E T2d, T4w, T4x, T2g, T2h;
			      {
				   E T4d, T4G, T4F, T4g, T4E, T4L, T4H;
				   T4k = T4b + T4c;
				   T4d = T4b - T4c;
				   T4G = T4C - T4D;
				   T4E = T4C + T4D;
				   ri[WS(rs, 18)] = FMA(KP951056516, T45, T3Q);
				   ri[WS(rs, 2)] = FNMS(KP951056516, T45, T3Q);
				   ri[WS(rs, 6)] = FMA(KP951056516, T47, T46);
				   ri[WS(rs, 14)] = FNMS(KP951056516, T47, T46);
				   ii[WS(rs, 10)] = T4E + T4B;
				   T4F = FNMS(KP250000000, T4E, T4B);
				   T4g = T4e - T4f;
				   T4l = T4e + T4f;
				   T2d = T2b + T2c;
				   T4w = T2b - T2c;
				   T4L = FMA(KP559016994, T4G, T4F);
				   T4H = FNMS(KP559016994, T4G, T4F);
				   T4h = FMA(KP618033988, T4g, T4d);
				   T4j = FNMS(KP618033988, T4d, T4g);
				   ii[WS(rs, 18)] = FNMS(KP951056516, T4K, T4H);
				   ii[WS(rs, 2)] = FMA(KP951056516, T4K, T4H);
				   ii[WS(rs, 14)] = FMA(KP951056516, T4M, T4L);
				   ii[WS(rs, 6)] = FNMS(KP951056516, T4M, T4L);
				   T4x = T2e - T2f;
				   T2g = T2e + T2f;
			      }
			      T2h = T2d + T2g;
			      T49 = T2d - T2g;
			      T4y = FMA(KP618033988, T4x, T4w);
			      T4A = FNMS(KP618033988, T4w, T4x);
			      ri[0] = T2a + T2h;
			      T48 = FNMS(KP250000000, T2h, T2a);
			 }
		    }
		    {
			 E T3u, T51, T5a, T5c, T56, T54;
			 {
			      E T53, T52, T3t, T3r, T2o, T59, T58, T2T, T2V, T4u, T4t, T2U, T3s, T2W;
			      {
				   E T3b, T3q, T4i, T4a, T4m;
				   T53 = T33 + T3a;
				   T3b = T33 - T3a;
				   T3q = T3i - T3p;
				   T52 = T3i + T3p;
				   T4i = FNMS(KP559016994, T49, T48);
				   T4a = FMA(KP559016994, T49, T48);
				   T4m = T4k + T4l;
				   T4u = T4k - T4l;
				   ri[WS(rs, 16)] = FMA(KP951056516, T4h, T4a);
				   ri[WS(rs, 4)] = FNMS(KP951056516, T4h, T4a);
				   ri[WS(rs, 8)] = FMA(KP951056516, T4j, T4i);
				   ri[WS(rs, 12)] = FNMS(KP951056516, T4j, T4i);
				   ii[0] = T4m + T4s;
				   T4t = FNMS(KP250000000, T4m, T4s);
				   T3t = FMA(KP618033988, T3b, T3q);
				   T3r = FNMS(KP618033988, T3q, T3b);
			      }
			      T3u = T2i + T2n;
			      T2o = T2i - T2n;
			      {
				   E T4v, T4z, T2D, T2S;
				   T4v = FMA(KP559016994, T4u, T4t);
				   T4z = FNMS(KP559016994, T4u, T4t);
				   T2D = T2v + T2C;
				   T59 = T2v - T2C;
				   T58 = T2K - T2R;
				   T2S = T2K + T2R;
				   ii[WS(rs, 16)] = FNMS(KP951056516, T4y, T4v);
				   ii[WS(rs, 4)] = FMA(KP951056516, T4y, T4v);
				   ii[WS(rs, 12)] = FMA(KP951056516, T4A, T4z);
				   ii[WS(rs, 8)] = FNMS(KP951056516, T4A, T4z);
				   T2T = T2D + T2S;
				   T2V = T2D - T2S;
			      }
			      ri[WS(rs, 15)] = T2o + T2T;
			      T2U = FNMS(KP250000000, T2T, T2o);
			      T51 = T4O + T4N;
			      T4P = T4N - T4O;
			      T5a = FNMS(KP618033988, T59, T58);
			      T5c = FMA(KP618033988, T58, T59);
			      T3s = FMA(KP559016994, T2V, T2U);
			      T2W = FNMS(KP559016994, T2V, T2U);
			      ri[WS(rs, 7)] = FNMS(KP951056516, T3r, T2W);
			      ri[WS(rs, 3)] = FMA(KP951056516, T3r, T2W);
			      ri[WS(rs, 19)] = FNMS(KP951056516, T3t, T3s);
			      ri[WS(rs, 11)] = FMA(KP951056516, T3t, T3s);
			      T56 = T52 - T53;
			      T54 = T52 + T53;
			 }
			 {
			      E T4Q, T4R, T3N, T3L, T4W, T4X, T3B, T3D, T3H, T3K, T55, T3C, T3M, T3E;
			      T4Q = T3F + T3G;
			      T3H = T3F - T3G;
			      T3K = T3I - T3J;
			      T4R = T3I + T3J;
			      ii[WS(rs, 15)] = T54 + T51;
			      T55 = FNMS(KP250000000, T54, T51);
			      T3N = FNMS(KP618033988, T3H, T3K);
			      T3L = FMA(KP618033988, T3K, T3H);
			      {
				   E T57, T5b, T3x, T3A;
				   T57 = FNMS(KP559016994, T56, T55);
				   T5b = FMA(KP559016994, T56, T55);
				   T3x = T3v + T3w;
				   T4W = T3v - T3w;
				   T4X = T3y - T3z;
				   T3A = T3y + T3z;
				   ii[WS(rs, 7)] = FMA(KP951056516, T5a, T57);
				   ii[WS(rs, 3)] = FNMS(KP951056516, T5a, T57);
				   ii[WS(rs, 19)] = FMA(KP951056516, T5c, T5b);
				   ii[WS(rs, 11)] = FNMS(KP951056516, T5c, T5b);
				   T3B = T3x + T3A;
				   T3D = T3x - T3A;
			      }
			      ri[WS(rs, 5)] = T3u + T3B;
			      T3C = FNMS(KP250000000, T3B, T3u);
			      T4Y = FMA(KP618033988, T4X, T4W);
			      T50 = FNMS(KP618033988, T4W, T4X);
			      T3M = FNMS(KP559016994, T3D, T3C);
			      T3E = FMA(KP559016994, T3D, T3C);
			      ri[WS(rs, 9)] = FNMS(KP951056516, T3L, T3E);
			      ri[WS(rs, 1)] = FMA(KP951056516, T3L, T3E);
			      ri[WS(rs, 17)] = FNMS(KP951056516, T3N, T3M);
			      ri[WS(rs, 13)] = FMA(KP951056516, T3N, T3M);
			      T4U = T4Q - T4R;
			      T4S = T4Q + T4R;
			 }
		    }
	       }
	  }
	  ii[WS(rs, 5)] = T4S + T4P;
	  T4T = FNMS(KP250000000, T4S, T4P);
	  T4Z = FNMS(KP559016994, T4U, T4T);
	  T4V = FMA(KP559016994, T4U, T4T);
	  ii[WS(rs, 9)] = FMA(KP951056516, T4Y, T4V);
	  ii[WS(rs, 1)] = FNMS(KP951056516, T4Y, T4V);
	  ii[WS(rs, 17)] = FMA(KP951056516, T50, T4Z);
	  ii[WS(rs, 13)] = FNMS(KP951056516, T50, T4Z);
     }
}

static const tw_instr twinstr[] = {
     {TW_FULL, 0, 20},
     {TW_NEXT, 1, 0}
};

static const ct_desc desc = { 20, "t1_20", twinstr, &GENUS, {136, 38, 110, 0}, 0, 0, 0 };

void X(codelet_t1_20) (planner *p) {
     X(kdft_dit_register) (p, t1_20, &desc);
}
#else				/* HAVE_FMA */

/* Generated by: ../../../genfft/gen_twiddle -compact -variables 4 -pipeline-latency 4 -n 20 -name t1_20 -include t.h */

/*
 * This function contains 246 FP additions, 124 FP multiplications,
 * (or, 184 additions, 62 multiplications, 62 fused multiply/add),
 * 85 stack variables, 4 constants, and 80 memory accesses
 */
#include "t.h"

static void t1_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
{
     DK(KP587785252, +0.587785252292473129168705954639072768597652438);
     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
     INT m;
     for (m = mb, W = W + (mb * 38); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 38, MAKE_VOLATILE_STRIDE(rs)) {
	  E Tj, T1R, T4g, T4p, T2q, T37, T3Q, T42, T1r, T1O, T1P, T3i, T3l, T44, T3D;
	  E T3E, T3K, T1V, T1W, T1X, T23, T28, T4r, T2W, T2X, T4c, T33, T34, T35, T2G;
	  E T2L, T2M, TG, T13, T14, T3p, T3s, T43, T3A, T3B, T3J, T1S, T1T, T1U, T2e;
	  E T2j, T4q, T2T, T2U, T4b, T30, T31, T32, T2v, T2A, T2B;
	  {
	       E T1, T3O, T6, T3N, Tc, T2n, Th, T2o;
	       T1 = ri[0];
	       T3O = ii[0];
	       {
		    E T3, T5, T2, T4;
		    T3 = ri[WS(rs, 10)];
		    T5 = ii[WS(rs, 10)];
		    T2 = W[18];
		    T4 = W[19];
		    T6 = FMA(T2, T3, T4 * T5);
		    T3N = FNMS(T4, T3, T2 * T5);
	       }
	       {
		    E T9, Tb, T8, Ta;
		    T9 = ri[WS(rs, 5)];
		    Tb = ii[WS(rs, 5)];
		    T8 = W[8];
		    Ta = W[9];
		    Tc = FMA(T8, T9, Ta * Tb);
		    T2n = FNMS(Ta, T9, T8 * Tb);
	       }
	       {
		    E Te, Tg, Td, Tf;
		    Te = ri[WS(rs, 15)];
		    Tg = ii[WS(rs, 15)];
		    Td = W[28];
		    Tf = W[29];
		    Th = FMA(Td, Te, Tf * Tg);
		    T2o = FNMS(Tf, Te, Td * Tg);
	       }
	       {
		    E T7, Ti, T4e, T4f;
		    T7 = T1 + T6;
		    Ti = Tc + Th;
		    Tj = T7 - Ti;
		    T1R = T7 + Ti;
		    T4e = T3O - T3N;
		    T4f = Tc - Th;
		    T4g = T4e - T4f;
		    T4p = T4f + T4e;
	       }
	       {
		    E T2m, T2p, T3M, T3P;
		    T2m = T1 - T6;
		    T2p = T2n - T2o;
		    T2q = T2m - T2p;
		    T37 = T2m + T2p;
		    T3M = T2n + T2o;
		    T3P = T3N + T3O;
		    T3Q = T3M + T3P;
		    T42 = T3P - T3M;
	       }
	  }
	  {
	       E T1f, T3g, T21, T2C, T1N, T3k, T27, T2K, T1q, T3h, T22, T2F, T1C, T3j, T26;
	       E T2H;
	       {
		    E T19, T1Z, T1e, T20;
		    {
			 E T16, T18, T15, T17;
			 T16 = ri[WS(rs, 8)];
			 T18 = ii[WS(rs, 8)];
			 T15 = W[14];
			 T17 = W[15];
			 T19 = FMA(T15, T16, T17 * T18);
			 T1Z = FNMS(T17, T16, T15 * T18);
		    }
		    {
			 E T1b, T1d, T1a, T1c;
			 T1b = ri[WS(rs, 18)];
			 T1d = ii[WS(rs, 18)];
			 T1a = W[34];
			 T1c = W[35];
			 T1e = FMA(T1a, T1b, T1c * T1d);
			 T20 = FNMS(T1c, T1b, T1a * T1d);
		    }
		    T1f = T19 + T1e;
		    T3g = T1Z + T20;
		    T21 = T1Z - T20;
		    T2C = T19 - T1e;
	       }
	       {
		    E T1H, T2I, T1M, T2J;
		    {
			 E T1E, T1G, T1D, T1F;
			 T1E = ri[WS(rs, 17)];
			 T1G = ii[WS(rs, 17)];
			 T1D = W[32];
			 T1F = W[33];
			 T1H = FMA(T1D, T1E, T1F * T1G);
			 T2I = FNMS(T1F, T1E, T1D * T1G);
		    }
		    {
			 E T1J, T1L, T1I, T1K;
			 T1J = ri[WS(rs, 7)];
			 T1L = ii[WS(rs, 7)];
			 T1I = W[12];
			 T1K = W[13];
			 T1M = FMA(T1I, T1J, T1K * T1L);
			 T2J = FNMS(T1K, T1J, T1I * T1L);
		    }
		    T1N = T1H + T1M;
		    T3k = T2I + T2J;
		    T27 = T1H - T1M;
		    T2K = T2I - T2J;
	       }
	       {
		    E T1k, T2D, T1p, T2E;
		    {
			 E T1h, T1j, T1g, T1i;
			 T1h = ri[WS(rs, 13)];
			 T1j = ii[WS(rs, 13)];
			 T1g = W[24];
			 T1i = W[25];
			 T1k = FMA(T1g, T1h, T1i * T1j);
			 T2D = FNMS(T1i, T1h, T1g * T1j);
		    }
		    {
			 E T1m, T1o, T1l, T1n;
			 T1m = ri[WS(rs, 3)];
			 T1o = ii[WS(rs, 3)];
			 T1l = W[4];
			 T1n = W[5];
			 T1p = FMA(T1l, T1m, T1n * T1o);
			 T2E = FNMS(T1n, T1m, T1l * T1o);
		    }
		    T1q = T1k + T1p;
		    T3h = T2D + T2E;
		    T22 = T1k - T1p;
		    T2F = T2D - T2E;
	       }
	       {
		    E T1w, T24, T1B, T25;
		    {
			 E T1t, T1v, T1s, T1u;
			 T1t = ri[WS(rs, 12)];
			 T1v = ii[WS(rs, 12)];
			 T1s = W[22];
			 T1u = W[23];
			 T1w = FMA(T1s, T1t, T1u * T1v);
			 T24 = FNMS(T1u, T1t, T1s * T1v);
		    }
		    {
			 E T1y, T1A, T1x, T1z;
			 T1y = ri[WS(rs, 2)];
			 T1A = ii[WS(rs, 2)];
			 T1x = W[2];
			 T1z = W[3];
			 T1B = FMA(T1x, T1y, T1z * T1A);
			 T25 = FNMS(T1z, T1y, T1x * T1A);
		    }
		    T1C = T1w + T1B;
		    T3j = T24 + T25;
		    T26 = T24 - T25;
		    T2H = T1w - T1B;
	       }
	       T1r = T1f - T1q;
	       T1O = T1C - T1N;
	       T1P = T1r + T1O;
	       T3i = T3g - T3h;
	       T3l = T3j - T3k;
	       T44 = T3i + T3l;
	       T3D = T3g + T3h;
	       T3E = T3j + T3k;
	       T3K = T3D + T3E;
	       T1V = T1f + T1q;
	       T1W = T1C + T1N;
	       T1X = T1V + T1W;
	       T23 = T21 + T22;
	       T28 = T26 + T27;
	       T4r = T23 + T28;
	       T2W = T21 - T22;
	       T2X = T26 - T27;
	       T4c = T2W + T2X;
	       T33 = T2C + T2F;
	       T34 = T2H + T2K;
	       T35 = T33 + T34;
	       T2G = T2C - T2F;
	       T2L = T2H - T2K;
	       T2M = T2G + T2L;
	  }
	  {
	       E Tu, T3n, T2c, T2r, T12, T3r, T2i, T2z, TF, T3o, T2d, T2u, TR, T3q, T2h;
	       E T2w;
	       {
		    E To, T2a, Tt, T2b;
		    {
			 E Tl, Tn, Tk, Tm;
			 Tl = ri[WS(rs, 4)];
			 Tn = ii[WS(rs, 4)];
			 Tk = W[6];
			 Tm = W[7];
			 To = FMA(Tk, Tl, Tm * Tn);
			 T2a = FNMS(Tm, Tl, Tk * Tn);
		    }
		    {
			 E Tq, Ts, Tp, Tr;
			 Tq = ri[WS(rs, 14)];
			 Ts = ii[WS(rs, 14)];
			 Tp = W[26];
			 Tr = W[27];
			 Tt = FMA(Tp, Tq, Tr * Ts);
			 T2b = FNMS(Tr, Tq, Tp * Ts);
		    }
		    Tu = To + Tt;
		    T3n = T2a + T2b;
		    T2c = T2a - T2b;
		    T2r = To - Tt;
	       }
	       {
		    E TW, T2x, T11, T2y;
		    {
			 E TT, TV, TS, TU;
			 TT = ri[WS(rs, 1)];
			 TV = ii[WS(rs, 1)];
			 TS = W[0];
			 TU = W[1];
			 TW = FMA(TS, TT, TU * TV);
			 T2x = FNMS(TU, TT, TS * TV);
		    }
		    {
			 E TY, T10, TX, TZ;
			 TY = ri[WS(rs, 11)];
			 T10 = ii[WS(rs, 11)];
			 TX = W[20];
			 TZ = W[21];
			 T11 = FMA(TX, TY, TZ * T10);
			 T2y = FNMS(TZ, TY, TX * T10);
		    }
		    T12 = TW + T11;
		    T3r = T2x + T2y;
		    T2i = TW - T11;
		    T2z = T2x - T2y;
	       }
	       {
		    E Tz, T2s, TE, T2t;
		    {
			 E Tw, Ty, Tv, Tx;
			 Tw = ri[WS(rs, 9)];
			 Ty = ii[WS(rs, 9)];
			 Tv = W[16];
			 Tx = W[17];
			 Tz = FMA(Tv, Tw, Tx * Ty);
			 T2s = FNMS(Tx, Tw, Tv * Ty);
		    }
		    {
			 E TB, TD, TA, TC;
			 TB = ri[WS(rs, 19)];
			 TD = ii[WS(rs, 19)];
			 TA = W[36];
			 TC = W[37];
			 TE = FMA(TA, TB, TC * TD);
			 T2t = FNMS(TC, TB, TA * TD);
		    }
		    TF = Tz + TE;
		    T3o = T2s + T2t;
		    T2d = Tz - TE;
		    T2u = T2s - T2t;
	       }
	       {
		    E TL, T2f, TQ, T2g;
		    {
			 E TI, TK, TH, TJ;
			 TI = ri[WS(rs, 16)];
			 TK = ii[WS(rs, 16)];
			 TH = W[30];
			 TJ = W[31];
			 TL = FMA(TH, TI, TJ * TK);
			 T2f = FNMS(TJ, TI, TH * TK);
		    }
		    {
			 E TN, TP, TM, TO;
			 TN = ri[WS(rs, 6)];
			 TP = ii[WS(rs, 6)];
			 TM = W[10];
			 TO = W[11];
			 TQ = FMA(TM, TN, TO * TP);
			 T2g = FNMS(TO, TN, TM * TP);
		    }
		    TR = TL + TQ;
		    T3q = T2f + T2g;
		    T2h = T2f - T2g;
		    T2w = TL - TQ;
	       }
	       TG = Tu - TF;
	       T13 = TR - T12;
	       T14 = TG + T13;
	       T3p = T3n - T3o;
	       T3s = T3q - T3r;
	       T43 = T3p + T3s;
	       T3A = T3n + T3o;
	       T3B = T3q + T3r;
	       T3J = T3A + T3B;
	       T1S = Tu + TF;
	       T1T = TR + T12;
	       T1U = T1S + T1T;
	       T2e = T2c + T2d;
	       T2j = T2h + T2i;
	       T4q = T2e + T2j;
	       T2T = T2c - T2d;
	       T2U = T2h - T2i;
	       T4b = T2T + T2U;
	       T30 = T2r + T2u;
	       T31 = T2w + T2z;
	       T32 = T30 + T31;
	       T2v = T2r - T2u;
	       T2A = T2w - T2z;
	       T2B = T2v + T2A;
	  }
	  {
	       E T3e, T1Q, T3d, T3u, T3w, T3m, T3t, T3v, T3f;
	       T3e = KP559016994 * (T14 - T1P);
	       T1Q = T14 + T1P;
	       T3d = FNMS(KP250000000, T1Q, Tj);
	       T3m = T3i - T3l;
	       T3t = T3p - T3s;
	       T3u = FNMS(KP587785252, T3t, KP951056516 * T3m);
	       T3w = FMA(KP951056516, T3t, KP587785252 * T3m);
	       ri[WS(rs, 10)] = Tj + T1Q;
	       T3v = T3e + T3d;
	       ri[WS(rs, 14)] = T3v - T3w;
	       ri[WS(rs, 6)] = T3v + T3w;
	       T3f = T3d - T3e;
	       ri[WS(rs, 2)] = T3f - T3u;
	       ri[WS(rs, 18)] = T3f + T3u;
	  }
	  {
	       E T47, T45, T46, T41, T4a, T3Z, T40, T49, T48;
	       T47 = KP559016994 * (T43 - T44);
	       T45 = T43 + T44;
	       T46 = FNMS(KP250000000, T45, T42);
	       T3Z = T1r - T1O;
	       T40 = TG - T13;
	       T41 = FNMS(KP587785252, T40, KP951056516 * T3Z);
	       T4a = FMA(KP951056516, T40, KP587785252 * T3Z);
	       ii[WS(rs, 10)] = T45 + T42;
	       T49 = T47 + T46;
	       ii[WS(rs, 6)] = T49 - T4a;
	       ii[WS(rs, 14)] = T4a + T49;
	       T48 = T46 - T47;
	       ii[WS(rs, 2)] = T41 + T48;
	       ii[WS(rs, 18)] = T48 - T41;
	  }
	  {
	       E T3x, T1Y, T3y, T3G, T3I, T3C, T3F, T3H, T3z;
	       T3x = KP559016994 * (T1U - T1X);
	       T1Y = T1U + T1X;
	       T3y = FNMS(KP250000000, T1Y, T1R);
	       T3C = T3A - T3B;
	       T3F = T3D - T3E;
	       T3G = FMA(KP951056516, T3C, KP587785252 * T3F);
	       T3I = FNMS(KP587785252, T3C, KP951056516 * T3F);
	       ri[0] = T1R + T1Y;
	       T3H = T3y - T3x;
	       ri[WS(rs, 12)] = T3H - T3I;
	       ri[WS(rs, 8)] = T3H + T3I;
	       T3z = T3x + T3y;
	       ri[WS(rs, 4)] = T3z - T3G;
	       ri[WS(rs, 16)] = T3z + T3G;
	  }
	  {
	       E T3U, T3L, T3V, T3T, T3Y, T3R, T3S, T3X, T3W;
	       T3U = KP559016994 * (T3J - T3K);
	       T3L = T3J + T3K;
	       T3V = FNMS(KP250000000, T3L, T3Q);
	       T3R = T1S - T1T;
	       T3S = T1V - T1W;
	       T3T = FMA(KP951056516, T3R, KP587785252 * T3S);
	       T3Y = FNMS(KP587785252, T3R, KP951056516 * T3S);
	       ii[0] = T3L + T3Q;
	       T3X = T3V - T3U;
	       ii[WS(rs, 8)] = T3X - T3Y;
	       ii[WS(rs, 12)] = T3Y + T3X;
	       T3W = T3U + T3V;
	       ii[WS(rs, 4)] = T3T + T3W;
	       ii[WS(rs, 16)] = T3W - T3T;
	  }
	  {
	       E T2P, T2N, T2O, T2l, T2R, T29, T2k, T2S, T2Q;
	       T2P = KP559016994 * (T2B - T2M);
	       T2N = T2B + T2M;
	       T2O = FNMS(KP250000000, T2N, T2q);
	       T29 = T23 - T28;
	       T2k = T2e - T2j;
	       T2l = FNMS(KP587785252, T2k, KP951056516 * T29);
	       T2R = FMA(KP951056516, T2k, KP587785252 * T29);
	       ri[WS(rs, 15)] = T2q + T2N;
	       T2S = T2P + T2O;
	       ri[WS(rs, 11)] = T2R + T2S;
	       ri[WS(rs, 19)] = T2S - T2R;
	       T2Q = T2O - T2P;
	       ri[WS(rs, 3)] = T2l + T2Q;
	       ri[WS(rs, 7)] = T2Q - T2l;
	  }
	  {
	       E T4u, T4s, T4t, T4y, T4A, T4w, T4x, T4z, T4v;
	       T4u = KP559016994 * (T4q - T4r);
	       T4s = T4q + T4r;
	       T4t = FNMS(KP250000000, T4s, T4p);
	       T4w = T2G - T2L;
	       T4x = T2v - T2A;
	       T4y = FNMS(KP587785252, T4x, KP951056516 * T4w);
	       T4A = FMA(KP951056516, T4x, KP587785252 * T4w);
	       ii[WS(rs, 15)] = T4s + T4p;
	       T4z = T4u + T4t;
	       ii[WS(rs, 11)] = T4z - T4A;
	       ii[WS(rs, 19)] = T4A + T4z;
	       T4v = T4t - T4u;
	       ii[WS(rs, 3)] = T4v - T4y;
	       ii[WS(rs, 7)] = T4y + T4v;
	  }
	  {
	       E T36, T38, T39, T2Z, T3b, T2V, T2Y, T3c, T3a;
	       T36 = KP559016994 * (T32 - T35);
	       T38 = T32 + T35;
	       T39 = FNMS(KP250000000, T38, T37);
	       T2V = T2T - T2U;
	       T2Y = T2W - T2X;
	       T2Z = FMA(KP951056516, T2V, KP587785252 * T2Y);
	       T3b = FNMS(KP587785252, T2V, KP951056516 * T2Y);
	       ri[WS(rs, 5)] = T37 + T38;
	       T3c = T39 - T36;
	       ri[WS(rs, 13)] = T3b + T3c;
	       ri[WS(rs, 17)] = T3c - T3b;
	       T3a = T36 + T39;
	       ri[WS(rs, 1)] = T2Z + T3a;
	       ri[WS(rs, 9)] = T3a - T2Z;
	  }
	  {
	       E T4d, T4h, T4i, T4m, T4o, T4k, T4l, T4n, T4j;
	       T4d = KP559016994 * (T4b - T4c);
	       T4h = T4b + T4c;
	       T4i = FNMS(KP250000000, T4h, T4g);
	       T4k = T30 - T31;
	       T4l = T33 - T34;
	       T4m = FMA(KP951056516, T4k, KP587785252 * T4l);
	       T4o = FNMS(KP587785252, T4k, KP951056516 * T4l);
	       ii[WS(rs, 5)] = T4h + T4g;
	       T4n = T4i - T4d;
	       ii[WS(rs, 13)] = T4n - T4o;
	       ii[WS(rs, 17)] = T4o + T4n;
	       T4j = T4d + T4i;
	       ii[WS(rs, 1)] = T4j - T4m;
	       ii[WS(rs, 9)] = T4m + T4j;
	  }
     }
}

static const tw_instr twinstr[] = {
     {TW_FULL, 0, 20},
     {TW_NEXT, 1, 0}
};

static const ct_desc desc = { 20, "t1_20", twinstr, &GENUS, {184, 62, 62, 0}, 0, 0, 0 };

void X(codelet_t1_20) (planner *p) {
     X(kdft_dit_register) (p, t1_20, &desc);
}
#endif				/* HAVE_FMA */