Mercurial > hg > batch-feature-extraction-tool
view Lib/fftw-3.2.1/doc/html/Advanced-Complex-DFTs.html @ 14:636c989477e7
XML changes for Public.
author | Geogaddi\David <d.m.ronan@qmul.ac.uk> |
---|---|
date | Wed, 04 May 2016 11:02:59 +0100 |
parents | 25bf17994ef1 |
children |
line wrap: on
line source
<html lang="en"> <head> <title>Advanced Complex DFTs - FFTW 3.2.1</title> <meta http-equiv="Content-Type" content="text/html"> <meta name="description" content="FFTW 3.2.1"> <meta name="generator" content="makeinfo 4.8"> <link title="Top" rel="start" href="index.html#Top"> <link rel="up" href="Advanced-Interface.html#Advanced-Interface" title="Advanced Interface"> <link rel="prev" href="Advanced-Interface.html#Advanced-Interface" title="Advanced Interface"> <link rel="next" href="Advanced-Real_002ddata-DFTs.html#Advanced-Real_002ddata-DFTs" title="Advanced Real-data DFTs"> <link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage"> <!-- This manual is for FFTW (version 3.2.1, 5 February 2009). Copyright (C) 2003 Matteo Frigo. Copyright (C) 2003 Massachusetts Institute of Technology. Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by the Free Software Foundation. --> <meta http-equiv="Content-Style-Type" content="text/css"> <style type="text/css"><!-- pre.display { font-family:inherit } pre.format { font-family:inherit } pre.smalldisplay { font-family:inherit; font-size:smaller } pre.smallformat { font-family:inherit; font-size:smaller } pre.smallexample { font-size:smaller } pre.smalllisp { font-size:smaller } span.sc { font-variant:small-caps } span.roman { font-family:serif; font-weight:normal; } span.sansserif { font-family:sans-serif; font-weight:normal; } --></style> </head> <body> <div class="node"> <p> <a name="Advanced-Complex-DFTs"></a> Next: <a rel="next" accesskey="n" href="Advanced-Real_002ddata-DFTs.html#Advanced-Real_002ddata-DFTs">Advanced Real-data DFTs</a>, Previous: <a rel="previous" accesskey="p" href="Advanced-Interface.html#Advanced-Interface">Advanced Interface</a>, Up: <a rel="up" accesskey="u" href="Advanced-Interface.html#Advanced-Interface">Advanced Interface</a> <hr> </div> <h4 class="subsection">4.4.1 Advanced Complex DFTs</h4> <pre class="example"> fftw_plan fftw_plan_many_dft(int rank, const int *n, int howmany, fftw_complex *in, const int *inembed, int istride, int idist, fftw_complex *out, const int *onembed, int ostride, int odist, int sign, unsigned flags); </pre> <p><a name="index-fftw_005fplan_005fmany_005fdft-223"></a> This plans multidimensional complex DFTs, and is exactly the same as <code>fftw_plan_dft</code> except for the new parameters <code>howmany</code>, {<code>i</code>,<code>o</code>}<code>nembed</code>, {<code>i</code>,<code>o</code>}<code>stride</code>, and {<code>i</code>,<code>o</code>}<code>dist</code>. <p><code>howmany</code> is the number of transforms to compute, where the <code>k</code>-th transform is of the arrays starting at <code>in+k*idist</code> and <code>out+k*odist</code>. The resulting plans can often be faster than calling FFTW multiple times for the individual transforms. The basic <code>fftw_plan_dft</code> interface corresponds to <code>howmany=1</code> (in which case the <code>dist</code> parameters are ignored). <a name="index-howmany-parameter-224"></a><a name="index-dist-225"></a> The two <code>nembed</code> parameters (which should be arrays of length <code>rank</code>) indicate the sizes of the input and output array dimensions, respectively, where the transform is of a subarray of size <code>n</code>. (Each dimension of <code>n</code> should be <code><=</code> the corresponding dimension of the <code>nembed</code> arrays.) That is, the input and output arrays are stored in row-major order with size given by <code>nembed</code> (not counting the strides and howmany multiplicities). Passing <code>NULL</code> for an <code>nembed</code> parameter is equivalent to passing <code>n</code> (i.e. same physical and logical dimensions, as in the basic interface.) <p>The <code>stride</code> parameters indicate that the <code>j</code>-th element of the input or output arrays is located at <code>j*istride</code> or <code>j*ostride</code>, respectively. (For a multi-dimensional array, <code>j</code> is the ordinary row-major index.) When combined with the <code>k</code>-th transform in a <code>howmany</code> loop, from above, this means that the (<code>j</code>,<code>k</code>)-th element is at <code>j*stride+k*dist</code>. (The basic <code>fftw_plan_dft</code> interface corresponds to a stride of 1.) <a name="index-stride-226"></a> For in-place transforms, the input and output <code>stride</code> and <code>dist</code> parameters should be the same; otherwise, the planner may return <code>NULL</code>. <p>Arrays <code>n</code>, <code>inembed</code>, and <code>onembed</code> are not used after this function returns. You can safely free or reuse them. <p>So, for example, to transform a sequence of contiguous arrays, stored one after another, one would use a <code>stride</code> of 1 and a <code>dist</code> of N, where N is the product of the dimensions. In another example, to transform an array of contiguous “vectors” of length M, one would use a <code>howmany</code> of M, a <code>stride</code> of M, and a <code>dist</code> of 1. <a name="index-vector-227"></a> <!-- =========> --> </body></html>