view Lib/fftw-3.2.1/rdft/scalar/r2cf/r2cfII_9.c @ 0:25bf17994ef1

First commit. VS2013, Codeblocks and Mac OSX configuration
author Geogaddi\David <d.m.ronan@qmul.ac.uk>
date Thu, 09 Jul 2015 01:12:16 +0100
parents
children
line wrap: on
line source
/*
 * Copyright (c) 2003, 2007-8 Matteo Frigo
 * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Mon Feb  9 19:54:12 EST 2009 */

#include "codelet-rdft.h"

#ifdef HAVE_FMA

/* Generated by: ../../../genfft/gen_r2cf -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 9 -name r2cfII_9 -dft-II -include r2cfII.h */

/*
 * This function contains 42 FP additions, 34 FP multiplications,
 * (or, 12 additions, 4 multiplications, 30 fused multiply/add),
 * 46 stack variables, 17 constants, and 18 memory accesses
 */
#include "r2cfII.h"

static void r2cfII_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
{
     DK(KP939692620, +0.939692620785908384054109277324731469936208134);
     DK(KP879385241, +0.879385241571816768108218554649462939872416269);
     DK(KP984807753, +0.984807753012208059366743024589523013670643252);
     DK(KP852868531, +0.852868531952443209628250963940074071936020296);
     DK(KP666666666, +0.666666666666666666666666666666666666666666667);
     DK(KP673648177, +0.673648177666930348851716626769314796000375677);
     DK(KP898197570, +0.898197570222573798468955502359086394667167570);
     DK(KP826351822, +0.826351822333069651148283373230685203999624323);
     DK(KP907603734, +0.907603734547952313649323976213898122064543220);
     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
     DK(KP420276625, +0.420276625461206169731530603237061658838781920);
     DK(KP315207469, +0.315207469095904627298647952427796244129086440);
     DK(KP203604859, +0.203604859554852403062088995281827210665664861);
     DK(KP152703644, +0.152703644666139302296566746461370407999248646);
     DK(KP726681596, +0.726681596905677465811651808188092531873167623);
     DK(KP968908795, +0.968908795874236621082202410917456709164223497);
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
     INT i;
     for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(rs), MAKE_VOLATILE_STRIDE(csr), MAKE_VOLATILE_STRIDE(csi)) {
	  E To, T5, Tp, Ta, Ti, Tm, TB, Tq, Tt, Tf, Th;
	  {
	       E T1, T6, T4, Tb, Tk, T9, Tc, Td, Tl, Te;
	       {
		    E T2, T3, T7, T8;
		    T1 = R0[0];
		    T2 = R0[WS(rs, 3)];
		    T3 = R1[WS(rs, 1)];
		    T6 = R0[WS(rs, 1)];
		    T7 = R0[WS(rs, 4)];
		    T8 = R1[WS(rs, 2)];
		    T4 = T2 - T3;
		    To = T2 + T3;
		    Tb = R0[WS(rs, 2)];
		    Tk = T7 + T8;
		    T9 = T7 - T8;
		    Tc = R1[0];
		    Td = R1[WS(rs, 3)];
	       }
	       T5 = T1 + T4;
	       Tp = FNMS(KP500000000, T4, T1);
	       Ta = T6 + T9;
	       Tl = FNMS(KP500000000, T9, T6);
	       Te = Tc + Td;
	       Ti = Tc - Td;
	       Tm = FMA(KP968908795, Tl, Tk);
	       TB = FNMS(KP726681596, Tk, Tl);
	       Tq = FNMS(KP152703644, Tk, Tl);
	       Tt = FMA(KP203604859, Tl, Tk);
	       Tf = Tb - Te;
	       Th = FMA(KP500000000, Te, Tb);
	  }
	  {
	       E Ts, Tr, TA, Tj, Tg;
	       Ts = FMA(KP315207469, Ti, Th);
	       Tr = FNMS(KP420276625, Th, Ti);
	       TA = FMA(KP203604859, Th, Ti);
	       Tj = FNMS(KP152703644, Ti, Th);
	       Tg = Ta + Tf;
	       Ci[WS(csi, 1)] = KP866025403 * (Tf - Ta);
	       {
		    E Tu, Tx, TF, TC;
		    Tu = FNMS(KP907603734, Tt, Ts);
		    Tx = FNMS(KP826351822, Tr, Tq);
		    TF = FMA(KP898197570, TB, TA);
		    TC = FNMS(KP898197570, TB, TA);
		    {
			 E TE, Tn, Tv, Ty;
			 TE = FNMS(KP673648177, Tm, Tj);
			 Tn = FMA(KP673648177, Tm, Tj);
			 Cr[WS(csr, 4)] = T5 + Tg;
			 Cr[WS(csr, 1)] = FNMS(KP500000000, Tg, T5);
			 Tv = FNMS(KP666666666, Tu, Tr);
			 Ty = FNMS(KP666666666, Tx, Tt);
			 Cr[0] = FMA(KP852868531, TF, Tp);
			 {
			      E TG, TD, Tw, Tz;
			      TG = FMA(KP500000000, TF, TE);
			      Ci[0] = -(KP984807753 * (FMA(KP879385241, To, Tn)));
			      TD = FNMS(KP666666666, Tn, TC);
			      Tw = FMA(KP826351822, Tv, Tq);
			      Tz = FMA(KP907603734, Ty, Ts);
			      Cr[WS(csr, 3)] = FNMS(KP852868531, TG, Tp);
			      Ci[WS(csi, 3)] = -(KP866025403 * (FMA(KP852868531, TD, To)));
			      Cr[WS(csr, 2)] = FNMS(KP852868531, Tw, Tp);
			      Ci[WS(csi, 2)] = KP866025403 * (FNMS(KP939692620, Tz, To));
			 }
		    }
	       }
	  }
     }
}

static const kr2c_desc desc = { 9, "r2cfII_9", {12, 4, 30, 0}, &GENUS };

void X(codelet_r2cfII_9) (planner *p) {
     X(kr2c_register) (p, r2cfII_9, &desc);
}

#else				/* HAVE_FMA */

/* Generated by: ../../../genfft/gen_r2cf -compact -variables 4 -pipeline-latency 4 -n 9 -name r2cfII_9 -dft-II -include r2cfII.h */

/*
 * This function contains 42 FP additions, 30 FP multiplications,
 * (or, 25 additions, 13 multiplications, 17 fused multiply/add),
 * 39 stack variables, 14 constants, and 18 memory accesses
 */
#include "r2cfII.h"

static void r2cfII_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
{
     DK(KP663413948, +0.663413948168938396205421319635891297216863310);
     DK(KP642787609, +0.642787609686539326322643409907263432907559884);
     DK(KP556670399, +0.556670399226419366452912952047023132968291906);
     DK(KP766044443, +0.766044443118978035202392650555416673935832457);
     DK(KP852868531, +0.852868531952443209628250963940074071936020296);
     DK(KP173648177, +0.173648177666930348851716626769314796000375677);
     DK(KP984807753, +0.984807753012208059366743024589523013670643252);
     DK(KP150383733, +0.150383733180435296639271897612501926072238258);
     DK(KP813797681, +0.813797681349373692844693217248393223289101568);
     DK(KP342020143, +0.342020143325668733044099614682259580763083368);
     DK(KP939692620, +0.939692620785908384054109277324731469936208134);
     DK(KP296198132, +0.296198132726023843175338011893050938967728390);
     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
     INT i;
     for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(rs), MAKE_VOLATILE_STRIDE(csr), MAKE_VOLATILE_STRIDE(csi)) {
	  E T1, T4, To, Ta, Tl, Tk, Tf, Ti, Th, T2, T3, T5, Tg;
	  T1 = R0[0];
	  T2 = R1[WS(rs, 1)];
	  T3 = R0[WS(rs, 3)];
	  T4 = T2 - T3;
	  To = T2 + T3;
	  {
	       E T6, T7, T8, T9;
	       T6 = R0[WS(rs, 1)];
	       T7 = R1[WS(rs, 2)];
	       T8 = R0[WS(rs, 4)];
	       T9 = T7 - T8;
	       Ta = T6 - T9;
	       Tl = T7 + T8;
	       Tk = FMA(KP500000000, T9, T6);
	  }
	  {
	       E Tb, Tc, Td, Te;
	       Tb = R0[WS(rs, 2)];
	       Tc = R1[0];
	       Td = R1[WS(rs, 3)];
	       Te = Tc + Td;
	       Tf = Tb - Te;
	       Ti = FMA(KP500000000, Te, Tb);
	       Th = Tc - Td;
	  }
	  Ci[WS(csi, 1)] = KP866025403 * (Tf - Ta);
	  T5 = T1 - T4;
	  Tg = Ta + Tf;
	  Cr[WS(csr, 1)] = FNMS(KP500000000, Tg, T5);
	  Cr[WS(csr, 4)] = T5 + Tg;
	  {
	       E Tr, Tt, Tw, Tv, Tu, Tp, Tq, Ts, Tj, Tm, Tn;
	       Tr = FMA(KP500000000, T4, T1);
	       Tt = FMA(KP296198132, Th, KP939692620 * Ti);
	       Tw = FNMS(KP813797681, Th, KP342020143 * Ti);
	       Tv = FNMS(KP984807753, Tk, KP150383733 * Tl);
	       Tu = FMA(KP173648177, Tk, KP852868531 * Tl);
	       Tp = FNMS(KP556670399, Tl, KP766044443 * Tk);
	       Tq = FMA(KP852868531, Th, KP173648177 * Ti);
	       Ts = Tp + Tq;
	       Tj = FNMS(KP984807753, Ti, KP150383733 * Th);
	       Tm = FMA(KP642787609, Tk, KP663413948 * Tl);
	       Tn = Tj - Tm;
	       Ci[0] = FNMS(KP866025403, To, Tn);
	       Cr[0] = Tr + Ts;
	       Ci[WS(csi, 3)] = FNMS(KP500000000, Tn, KP866025403 * ((Tp - Tq) - To));
	       Cr[WS(csr, 3)] = FMA(KP866025403, Tm + Tj, Tr) - (KP500000000 * Ts);
	       Ci[WS(csi, 2)] = FMA(KP866025403, To - (Tu + Tt), KP500000000 * (Tw - Tv));
	       Cr[WS(csr, 2)] = FMA(KP500000000, Tt - Tu, Tr) + (KP866025403 * (Tv + Tw));
	  }
     }
}

static const kr2c_desc desc = { 9, "r2cfII_9", {25, 13, 17, 0}, &GENUS };

void X(codelet_r2cfII_9) (planner *p) {
     X(kr2c_register) (p, r2cfII_9, &desc);
}

#endif				/* HAVE_FMA */