view Lib/fftw-3.2.1/rdft/scalar/r2cb/hc2cbdft_6.c @ 0:25bf17994ef1

First commit. VS2013, Codeblocks and Mac OSX configuration
author Geogaddi\David <d.m.ronan@qmul.ac.uk>
date Thu, 09 Jul 2015 01:12:16 +0100
parents
children
line wrap: on
line source
/*
 * Copyright (c) 2003, 2007-8 Matteo Frigo
 * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Mon Feb  9 19:56:14 EST 2009 */

#include "codelet-rdft.h"

#ifdef HAVE_FMA

/* Generated by: ../../../genfft/gen_hc2cdft -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 6 -dif -name hc2cbdft_6 -include hc2cb.h */

/*
 * This function contains 58 FP additions, 32 FP multiplications,
 * (or, 36 additions, 10 multiplications, 22 fused multiply/add),
 * 52 stack variables, 2 constants, and 24 memory accesses
 */
#include "hc2cb.h"

static void hc2cbdft_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
     INT m;
     for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 10, MAKE_VOLATILE_STRIDE(rs)) {
	  E T18, T1b, T16, T1e, T1a, T1f, T19, T1g, T1c;
	  {
	       E Tw, T4, TV, Tj, TP, TH, Tr, TY, T5, T6, Ta, Ty;
	       {
		    E Tg, TF, Tf, TD, Tp, Th;
		    {
			 E Td, Te, Tn, To;
			 Td = Ip[WS(rs, 1)];
			 Te = Im[WS(rs, 1)];
			 Tn = Ip[0];
			 To = Im[WS(rs, 2)];
			 Tg = Ip[WS(rs, 2)];
			 TF = Te + Td;
			 Tf = Td - Te;
			 TD = Tn + To;
			 Tp = Tn - To;
			 Th = Im[0];
		    }
		    {
			 E T2, T3, T8, T9;
			 T2 = Rp[0];
			 T3 = Rm[WS(rs, 2)];
			 {
			      E Tq, TE, Ti, TG;
			      T8 = Rm[WS(rs, 1)];
			      TE = Tg + Th;
			      Ti = Tg - Th;
			      Tw = T2 - T3;
			      T4 = T2 + T3;
			      TG = TE - TF;
			      TV = TF + TE;
			      Tq = Tf + Ti;
			      Tj = Tf - Ti;
			      TP = FNMS(KP500000000, TG, TD);
			      TH = TD + TG;
			      T9 = Rp[WS(rs, 1)];
			      Tr = FNMS(KP500000000, Tq, Tp);
			      TY = Tp + Tq;
			 }
			 T5 = Rp[WS(rs, 2)];
			 T6 = Rm[0];
			 Ta = T8 + T9;
			 Ty = T8 - T9;
		    }
	       }
	       {
		    E TO, TT, Ts, TA, TR, Tc, TN, TW, TS, Tx, T7;
		    Tx = T5 - T6;
		    T7 = T5 + T6;
		    TO = W[0];
		    TT = W[1];
		    {
			 E Tz, TQ, Tb, TU;
			 Tz = Tx + Ty;
			 TQ = Tx - Ty;
			 Tb = T7 + Ta;
			 Ts = T7 - Ta;
			 TU = FNMS(KP500000000, Tz, Tw);
			 TA = Tw + Tz;
			 TR = FMA(KP866025403, TQ, TP);
			 T18 = FNMS(KP866025403, TQ, TP);
			 Tc = FNMS(KP500000000, Tb, T4);
			 TN = T4 + Tb;
			 T1b = FMA(KP866025403, TV, TU);
			 TW = FNMS(KP866025403, TV, TU);
			 TS = TO * TR;
		    }
		    {
			 E T15, Tt, T12, T1, Tm, TI, TM, Tl, TJ;
			 {
			      E Tv, TC, TB, TL, Tk, TZ, TX, T10;
			      T15 = FMA(KP866025403, Ts, Tr);
			      Tt = FNMS(KP866025403, Ts, Tr);
			      TZ = TO * TW;
			      TX = FMA(TT, TW, TS);
			      Tv = W[4];
			      TC = W[5];
			      T10 = FNMS(TT, TR, TZ);
			      Rm[0] = TN + TX;
			      Rp[0] = TN - TX;
			      TB = Tv * TA;
			      Im[0] = T10 - TY;
			      Ip[0] = TY + T10;
			      TL = TC * TA;
			      Tk = FNMS(KP866025403, Tj, Tc);
			      T12 = FMA(KP866025403, Tj, Tc);
			      T1 = W[3];
			      Tm = W[2];
			      TI = FNMS(TC, TH, TB);
			      TM = FMA(Tv, TH, TL);
			      Tl = T1 * Tk;
			      TJ = Tm * Tk;
			 }
			 {
			      E T11, T14, T13, T1d, T17, Tu, TK;
			      Tu = FMA(Tm, Tt, Tl);
			      TK = FNMS(T1, Tt, TJ);
			      T11 = W[6];
			      T14 = W[7];
			      Im[WS(rs, 1)] = TI - Tu;
			      Ip[WS(rs, 1)] = Tu + TI;
			      Rm[WS(rs, 1)] = TK + TM;
			      Rp[WS(rs, 1)] = TK - TM;
			      T13 = T11 * T12;
			      T1d = T14 * T12;
			      T17 = W[8];
			      T16 = FNMS(T14, T15, T13);
			      T1e = FMA(T11, T15, T1d);
			      T1a = W[9];
			      T1f = T17 * T1b;
			      T19 = T17 * T18;
			 }
		    }
	       }
	  }
	  T1g = FNMS(T1a, T18, T1f);
	  T1c = FMA(T1a, T1b, T19);
	  Im[WS(rs, 2)] = T1g - T1e;
	  Ip[WS(rs, 2)] = T1e + T1g;
	  Rm[WS(rs, 2)] = T16 + T1c;
	  Rp[WS(rs, 2)] = T16 - T1c;
     }
}

static const tw_instr twinstr[] = {
     {TW_FULL, 1, 6},
     {TW_NEXT, 1, 0}
};

static const hc2c_desc desc = { 6, "hc2cbdft_6", twinstr, &GENUS, {36, 10, 22, 0} };

void X(codelet_hc2cbdft_6) (planner *p) {
     X(khc2c_register) (p, hc2cbdft_6, &desc, HC2C_VIA_DFT);
}
#else				/* HAVE_FMA */

/* Generated by: ../../../genfft/gen_hc2cdft -compact -variables 4 -pipeline-latency 4 -sign 1 -n 6 -dif -name hc2cbdft_6 -include hc2cb.h */

/*
 * This function contains 58 FP additions, 28 FP multiplications,
 * (or, 44 additions, 14 multiplications, 14 fused multiply/add),
 * 29 stack variables, 2 constants, and 24 memory accesses
 */
#include "hc2cb.h"

static void hc2cbdft_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
     INT m;
     for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 10, MAKE_VOLATILE_STRIDE(rs)) {
	  E T4, Tv, Tr, TL, Tb, Tc, Ty, TP, To, TB, Tj, TQ, Tp, Tq, TE;
	  E TM;
	  {
	       E Ta, Tx, T7, Tw, T2, T3;
	       T2 = Rp[0];
	       T3 = Rm[WS(rs, 2)];
	       T4 = T2 + T3;
	       Tv = T2 - T3;
	       {
		    E T8, T9, T5, T6;
		    T8 = Rm[WS(rs, 1)];
		    T9 = Rp[WS(rs, 1)];
		    Ta = T8 + T9;
		    Tx = T8 - T9;
		    T5 = Rp[WS(rs, 2)];
		    T6 = Rm[0];
		    T7 = T5 + T6;
		    Tw = T5 - T6;
	       }
	       Tr = KP866025403 * (T7 - Ta);
	       TL = KP866025403 * (Tw - Tx);
	       Tb = T7 + Ta;
	       Tc = FNMS(KP500000000, Tb, T4);
	       Ty = Tw + Tx;
	       TP = FNMS(KP500000000, Ty, Tv);
	  }
	  {
	       E Tf, TC, Ti, TD, Td, Te;
	       Td = Ip[WS(rs, 1)];
	       Te = Im[WS(rs, 1)];
	       Tf = Td - Te;
	       TC = Te + Td;
	       {
		    E Tm, Tn, Tg, Th;
		    Tm = Ip[0];
		    Tn = Im[WS(rs, 2)];
		    To = Tm - Tn;
		    TB = Tm + Tn;
		    Tg = Ip[WS(rs, 2)];
		    Th = Im[0];
		    Ti = Tg - Th;
		    TD = Tg + Th;
	       }
	       Tj = KP866025403 * (Tf - Ti);
	       TQ = KP866025403 * (TC + TD);
	       Tp = Tf + Ti;
	       Tq = FNMS(KP500000000, Tp, To);
	       TE = TC - TD;
	       TM = FMA(KP500000000, TE, TB);
	  }
	  {
	       E TJ, TT, TS, TU;
	       TJ = T4 + Tb;
	       TT = To + Tp;
	       {
		    E TN, TR, TK, TO;
		    TN = TL + TM;
		    TR = TP - TQ;
		    TK = W[0];
		    TO = W[1];
		    TS = FMA(TK, TN, TO * TR);
		    TU = FNMS(TO, TN, TK * TR);
	       }
	       Rp[0] = TJ - TS;
	       Ip[0] = TT + TU;
	       Rm[0] = TJ + TS;
	       Im[0] = TU - TT;
	  }
	  {
	       E TZ, T15, T14, T16;
	       {
		    E TW, TY, TV, TX;
		    TW = Tc + Tj;
		    TY = Tr + Tq;
		    TV = W[6];
		    TX = W[7];
		    TZ = FNMS(TX, TY, TV * TW);
		    T15 = FMA(TX, TW, TV * TY);
	       }
	       {
		    E T11, T13, T10, T12;
		    T11 = TM - TL;
		    T13 = TP + TQ;
		    T10 = W[8];
		    T12 = W[9];
		    T14 = FMA(T10, T11, T12 * T13);
		    T16 = FNMS(T12, T11, T10 * T13);
	       }
	       Rp[WS(rs, 2)] = TZ - T14;
	       Ip[WS(rs, 2)] = T15 + T16;
	       Rm[WS(rs, 2)] = TZ + T14;
	       Im[WS(rs, 2)] = T16 - T15;
	  }
	  {
	       E Tt, TH, TG, TI;
	       {
		    E Tk, Ts, T1, Tl;
		    Tk = Tc - Tj;
		    Ts = Tq - Tr;
		    T1 = W[3];
		    Tl = W[2];
		    Tt = FMA(T1, Tk, Tl * Ts);
		    TH = FNMS(T1, Ts, Tl * Tk);
	       }
	       {
		    E Tz, TF, Tu, TA;
		    Tz = Tv + Ty;
		    TF = TB - TE;
		    Tu = W[4];
		    TA = W[5];
		    TG = FNMS(TA, TF, Tu * Tz);
		    TI = FMA(TA, Tz, Tu * TF);
	       }
	       Ip[WS(rs, 1)] = Tt + TG;
	       Rp[WS(rs, 1)] = TH - TI;
	       Im[WS(rs, 1)] = TG - Tt;
	       Rm[WS(rs, 1)] = TH + TI;
	  }
     }
}

static const tw_instr twinstr[] = {
     {TW_FULL, 1, 6},
     {TW_NEXT, 1, 0}
};

static const hc2c_desc desc = { 6, "hc2cbdft_6", twinstr, &GENUS, {44, 14, 14, 0} };

void X(codelet_hc2cbdft_6) (planner *p) {
     X(khc2c_register) (p, hc2cbdft_6, &desc, HC2C_VIA_DFT);
}
#endif				/* HAVE_FMA */