view Lib/fftw-3.2.1/rdft/scalar/r2cb/hc2cbdft_12.c @ 0:25bf17994ef1

First commit. VS2013, Codeblocks and Mac OSX configuration
author Geogaddi\David <d.m.ronan@qmul.ac.uk>
date Thu, 09 Jul 2015 01:12:16 +0100
parents
children
line wrap: on
line source
/*
 * Copyright (c) 2003, 2007-8 Matteo Frigo
 * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Mon Feb  9 19:56:14 EST 2009 */

#include "codelet-rdft.h"

#ifdef HAVE_FMA

/* Generated by: ../../../genfft/gen_hc2cdft -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 12 -dif -name hc2cbdft_12 -include hc2cb.h */

/*
 * This function contains 142 FP additions, 68 FP multiplications,
 * (or, 96 additions, 22 multiplications, 46 fused multiply/add),
 * 81 stack variables, 2 constants, and 48 memory accesses
 */
#include "hc2cb.h"

static void hc2cbdft_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
     INT m;
     for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 22, MAKE_VOLATILE_STRIDE(rs)) {
	  E T2S, T2V, T2w, T2Z, T2T, T2I, T2Q, T2Y, T2U, T2K, T2G, T30, T2W;
	  {
	       E Tb, T1Z, T2D, T1E, T1N, T2y, TD, T2t, T1U, T1e, T2o, TY, T1f, TI, T1g;
	       E TN, Tm, T1V, T2z, T1H, T1Q, T2E, T19, T2u;
	       {
		    E T1c, TU, T1d, TX;
		    {
			 E Tu, T6, TT, TS, T5, Tt, Tw, Tx, TB, T9, Ty;
			 {
			      E T1, Tp, Tq, Tr, T4, T2, T3, T7, T8, Ts;
			      T1 = Rp[0];
			      T2 = Rp[WS(rs, 4)];
			      T3 = Rm[WS(rs, 3)];
			      Tp = Ip[0];
			      Tq = Ip[WS(rs, 4)];
			      Tr = Im[WS(rs, 3)];
			      T4 = T2 + T3;
			      Tu = T2 - T3;
			      T6 = Rm[WS(rs, 5)];
			      TT = Tr + Tq;
			      Ts = Tq - Tr;
			      TS = FNMS(KP500000000, T4, T1);
			      T5 = T1 + T4;
			      T7 = Rm[WS(rs, 1)];
			      T8 = Rp[WS(rs, 2)];
			      T1c = Tp + Ts;
			      Tt = FNMS(KP500000000, Ts, Tp);
			      Tw = Im[WS(rs, 5)];
			      Tx = Im[WS(rs, 1)];
			      TB = T7 - T8;
			      T9 = T7 + T8;
			      Ty = Ip[WS(rs, 2)];
			 }
			 {
			      E T1L, Tv, Ta, TV, TW, Tz;
			      T1L = FNMS(KP866025403, Tu, Tt);
			      Tv = FMA(KP866025403, Tu, Tt);
			      Ta = T6 + T9;
			      TV = FNMS(KP500000000, T9, T6);
			      TW = Tx + Ty;
			      Tz = Tx - Ty;
			      {
				   E TC, T1M, T1C, TA, T1D;
				   T1C = FMA(KP866025403, TT, TS);
				   TU = FNMS(KP866025403, TT, TS);
				   T1d = Tw + Tz;
				   TA = FNMS(KP500000000, Tz, Tw);
				   T1D = FNMS(KP866025403, TW, TV);
				   TX = FMA(KP866025403, TW, TV);
				   Tb = T5 + Ta;
				   T1Z = T5 - Ta;
				   TC = FNMS(KP866025403, TB, TA);
				   T1M = FMA(KP866025403, TB, TA);
				   T2D = T1C - T1D;
				   T1E = T1C + T1D;
				   T1N = T1L - T1M;
				   T2y = T1L + T1M;
				   TD = Tv + TC;
				   T2t = Tv - TC;
			      }
			 }
		    }
		    {
			 E T12, Th, TH, TE, Tg, T11, T14, TK, T17, Tk, TL;
			 {
			      E Tc, TZ, TF, TG, Tf, Td, Te, Ti, Tj, T10;
			      Tc = Rp[WS(rs, 3)];
			      T1U = T1c + T1d;
			      T1e = T1c - T1d;
			      T2o = TU + TX;
			      TY = TU - TX;
			      Td = Rm[WS(rs, 4)];
			      Te = Rm[0];
			      TZ = Ip[WS(rs, 3)];
			      TF = Im[WS(rs, 4)];
			      TG = Im[0];
			      Tf = Td + Te;
			      T12 = Td - Te;
			      Th = Rm[WS(rs, 2)];
			      TH = TF - TG;
			      T10 = TF + TG;
			      TE = FNMS(KP500000000, Tf, Tc);
			      Tg = Tc + Tf;
			      Ti = Rp[WS(rs, 1)];
			      Tj = Rp[WS(rs, 5)];
			      T1f = TZ - T10;
			      T11 = FMA(KP500000000, T10, TZ);
			      T14 = Im[WS(rs, 2)];
			      TK = Ip[WS(rs, 5)];
			      T17 = Ti - Tj;
			      Tk = Ti + Tj;
			      TL = Ip[WS(rs, 1)];
			 }
			 {
			      E T1O, T13, Tl, TJ, TM, T15;
			      T1O = FNMS(KP866025403, T12, T11);
			      T13 = FMA(KP866025403, T12, T11);
			      Tl = Th + Tk;
			      TJ = FNMS(KP500000000, Tk, Th);
			      TM = TK - TL;
			      T15 = TK + TL;
			      {
				   E T18, T1P, T1F, T16, T1G;
				   T1F = FNMS(KP866025403, TH, TE);
				   TI = FMA(KP866025403, TH, TE);
				   T1g = T15 - T14;
				   T16 = FMA(KP500000000, T15, T14);
				   T1G = FNMS(KP866025403, TM, TJ);
				   TN = FMA(KP866025403, TM, TJ);
				   Tm = Tg + Tl;
				   T1V = Tg - Tl;
				   T18 = FNMS(KP866025403, T17, T16);
				   T1P = FMA(KP866025403, T17, T16);
				   T2z = T1F - T1G;
				   T1H = T1F + T1G;
				   T1Q = T1O - T1P;
				   T2E = T1O + T1P;
				   T19 = T13 + T18;
				   T2u = T13 - T18;
			      }
			 }
		    }
	       }
	       {
		    E T20, T2p, T1v, T1s, T1q, T1y, T1u, T1z, T1t;
		    {
			 E T1m, Tn, T1a, T1p, T1i, To, TP, TR, T1h, TO;
			 T1m = Tb - Tm;
			 Tn = Tb + Tm;
			 T20 = T1f - T1g;
			 T1h = T1f + T1g;
			 T2p = TI + TN;
			 TO = TI - TN;
			 T1a = TY - T19;
			 T1v = TY + T19;
			 T1p = T1e - T1h;
			 T1i = T1e + T1h;
			 To = W[0];
			 T1s = TD - TO;
			 TP = TD + TO;
			 TR = W[1];
			 {
			      E T1l, T1o, T1n, T1x, T1r;
			      {
				   E T1j, TQ, T1k, T1b;
				   T1j = To * T1a;
				   TQ = To * TP;
				   T1l = W[10];
				   T1k = FNMS(TR, TP, T1j);
				   T1b = FMA(TR, T1a, TQ);
				   T1o = W[11];
				   T1n = T1l * T1m;
				   Im[0] = T1k - T1i;
				   Ip[0] = T1i + T1k;
				   Rm[0] = Tn + T1b;
				   Rp[0] = Tn - T1b;
				   T1x = T1o * T1m;
				   T1r = W[12];
			      }
			      T1q = FNMS(T1o, T1p, T1n);
			      T1y = FMA(T1l, T1p, T1x);
			      T1u = W[13];
			      T1z = T1r * T1v;
			      T1t = T1r * T1s;
			 }
		    }
		    {
			 E T2e, T2h, T1S, T2j, T2f, T26, T2c, T2m, T2g, T24, T22;
			 {
			      E T2b, T1R, T27, T2a, T1B, T29, T2l, T1K, T1J, T1W, T21, T25, T2d, T23, T1X;
			      E T1Y;
			      {
				   E T1I, T28, T1A, T1w, T1T;
				   T1A = FNMS(T1u, T1s, T1z);
				   T1w = FMA(T1u, T1v, T1t);
				   T1I = T1E - T1H;
				   T28 = T1E + T1H;
				   T2b = T1N + T1Q;
				   T1R = T1N - T1Q;
				   Im[WS(rs, 3)] = T1A - T1y;
				   Ip[WS(rs, 3)] = T1y + T1A;
				   Rm[WS(rs, 3)] = T1q + T1w;
				   Rp[WS(rs, 3)] = T1q - T1w;
				   T27 = W[14];
				   T2a = W[15];
				   T1B = W[2];
				   T29 = T27 * T28;
				   T2l = T2a * T28;
				   T1K = W[3];
				   T1J = T1B * T1I;
				   T1W = T1U - T1V;
				   T2e = T1V + T1U;
				   T2h = T1Z - T20;
				   T21 = T1Z + T20;
				   T25 = T1K * T1I;
				   T1T = W[4];
				   T2d = W[16];
				   T23 = T1T * T21;
				   T1X = T1T * T1W;
			      }
			      T1S = FNMS(T1K, T1R, T1J);
			      T2j = T2d * T2h;
			      T2f = T2d * T2e;
			      T26 = FMA(T1B, T1R, T25);
			      T1Y = W[5];
			      T2c = FNMS(T2a, T2b, T29);
			      T2m = FMA(T27, T2b, T2l);
			      T2g = W[17];
			      T24 = FNMS(T1Y, T1W, T23);
			      T22 = FMA(T1Y, T21, T1X);
			 }
			 {
			      E T2L, T2O, T2P, T2v, T2N, T2X, T2n, T2s, T2A, T2F, T2r, T2H, T2R, T2J, T2B;
			      E T2C;
			      {
				   E T2q, T2k, T2i, T2M, T2x;
				   T2k = FNMS(T2g, T2e, T2j);
				   T2i = FMA(T2g, T2h, T2f);
				   Im[WS(rs, 1)] = T24 - T26;
				   Ip[WS(rs, 1)] = T24 + T26;
				   Rm[WS(rs, 1)] = T22 + T1S;
				   Rp[WS(rs, 1)] = T1S - T22;
				   Im[WS(rs, 4)] = T2k - T2m;
				   Ip[WS(rs, 4)] = T2k + T2m;
				   Rm[WS(rs, 4)] = T2i + T2c;
				   Rp[WS(rs, 4)] = T2c - T2i;
				   T2q = T2o + T2p;
				   T2M = T2o - T2p;
				   T2L = W[18];
				   T2O = W[19];
				   T2P = T2t - T2u;
				   T2v = T2t + T2u;
				   T2N = T2L * T2M;
				   T2X = T2O * T2M;
				   T2n = W[6];
				   T2s = W[7];
				   T2S = T2y - T2z;
				   T2A = T2y + T2z;
				   T2F = T2D - T2E;
				   T2V = T2D + T2E;
				   T2r = T2n * T2q;
				   T2H = T2s * T2q;
				   T2x = W[8];
				   T2R = W[20];
				   T2J = T2x * T2F;
				   T2B = T2x * T2A;
			      }
			      T2w = FNMS(T2s, T2v, T2r);
			      T2Z = T2R * T2V;
			      T2T = T2R * T2S;
			      T2I = FMA(T2n, T2v, T2H);
			      T2C = W[9];
			      T2Q = FNMS(T2O, T2P, T2N);
			      T2Y = FMA(T2L, T2P, T2X);
			      T2U = W[21];
			      T2K = FNMS(T2C, T2A, T2J);
			      T2G = FMA(T2C, T2F, T2B);
			 }
		    }
	       }
	  }
	  T30 = FNMS(T2U, T2S, T2Z);
	  T2W = FMA(T2U, T2V, T2T);
	  Im[WS(rs, 2)] = T2K - T2I;
	  Ip[WS(rs, 2)] = T2I + T2K;
	  Rm[WS(rs, 2)] = T2w + T2G;
	  Rp[WS(rs, 2)] = T2w - T2G;
	  Im[WS(rs, 5)] = T30 - T2Y;
	  Ip[WS(rs, 5)] = T2Y + T30;
	  Rm[WS(rs, 5)] = T2Q + T2W;
	  Rp[WS(rs, 5)] = T2Q - T2W;
     }
}

static const tw_instr twinstr[] = {
     {TW_FULL, 1, 12},
     {TW_NEXT, 1, 0}
};

static const hc2c_desc desc = { 12, "hc2cbdft_12", twinstr, &GENUS, {96, 22, 46, 0} };

void X(codelet_hc2cbdft_12) (planner *p) {
     X(khc2c_register) (p, hc2cbdft_12, &desc, HC2C_VIA_DFT);
}
#else				/* HAVE_FMA */

/* Generated by: ../../../genfft/gen_hc2cdft -compact -variables 4 -pipeline-latency 4 -sign 1 -n 12 -dif -name hc2cbdft_12 -include hc2cb.h */

/*
 * This function contains 142 FP additions, 60 FP multiplications,
 * (or, 112 additions, 30 multiplications, 30 fused multiply/add),
 * 47 stack variables, 2 constants, and 48 memory accesses
 */
#include "hc2cb.h"

static void hc2cbdft_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
     INT m;
     for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 22, MAKE_VOLATILE_STRIDE(rs)) {
	  E Tv, T1E, TC, T1F, TW, T1x, TT, T1w, T1d, T1N, Tb, T1R, TI, T1z, TN;
	  E T1A, T17, T1I, T12, T1H, T1g, T1S, Tm, T1O;
	  {
	       E T1, Tq, T6, TA, T4, Tp, Tt, TS, T9, Tw, Tz, TV;
	       T1 = Rp[0];
	       Tq = Ip[0];
	       T6 = Rm[WS(rs, 5)];
	       TA = Im[WS(rs, 5)];
	       {
		    E T2, T3, Tr, Ts;
		    T2 = Rp[WS(rs, 4)];
		    T3 = Rm[WS(rs, 3)];
		    T4 = T2 + T3;
		    Tp = KP866025403 * (T2 - T3);
		    Tr = Im[WS(rs, 3)];
		    Ts = Ip[WS(rs, 4)];
		    Tt = Tr - Ts;
		    TS = KP866025403 * (Tr + Ts);
	       }
	       {
		    E T7, T8, Tx, Ty;
		    T7 = Rm[WS(rs, 1)];
		    T8 = Rp[WS(rs, 2)];
		    T9 = T7 + T8;
		    Tw = KP866025403 * (T7 - T8);
		    Tx = Im[WS(rs, 1)];
		    Ty = Ip[WS(rs, 2)];
		    Tz = Tx - Ty;
		    TV = KP866025403 * (Tx + Ty);
	       }
	       {
		    E Tu, TB, TU, TR;
		    Tu = FMA(KP500000000, Tt, Tq);
		    Tv = Tp + Tu;
		    T1E = Tu - Tp;
		    TB = FMS(KP500000000, Tz, TA);
		    TC = Tw + TB;
		    T1F = TB - Tw;
		    TU = FNMS(KP500000000, T9, T6);
		    TW = TU + TV;
		    T1x = TU - TV;
		    TR = FNMS(KP500000000, T4, T1);
		    TT = TR - TS;
		    T1w = TR + TS;
		    {
			 E T1b, T1c, T5, Ta;
			 T1b = Tq - Tt;
			 T1c = Tz + TA;
			 T1d = T1b - T1c;
			 T1N = T1b + T1c;
			 T5 = T1 + T4;
			 Ta = T6 + T9;
			 Tb = T5 + Ta;
			 T1R = T5 - Ta;
		    }
	       }
	  }
	  {
	       E Tc, T10, Th, T15, Tf, TY, TH, TZ, Tk, T13, TM, T14;
	       Tc = Rp[WS(rs, 3)];
	       T10 = Ip[WS(rs, 3)];
	       Th = Rm[WS(rs, 2)];
	       T15 = Im[WS(rs, 2)];
	       {
		    E Td, Te, TF, TG;
		    Td = Rm[WS(rs, 4)];
		    Te = Rm[0];
		    Tf = Td + Te;
		    TY = KP866025403 * (Td - Te);
		    TF = Im[WS(rs, 4)];
		    TG = Im[0];
		    TH = KP866025403 * (TF - TG);
		    TZ = TF + TG;
	       }
	       {
		    E Ti, Tj, TK, TL;
		    Ti = Rp[WS(rs, 1)];
		    Tj = Rp[WS(rs, 5)];
		    Tk = Ti + Tj;
		    T13 = KP866025403 * (Ti - Tj);
		    TK = Ip[WS(rs, 5)];
		    TL = Ip[WS(rs, 1)];
		    TM = KP866025403 * (TK - TL);
		    T14 = TK + TL;
	       }
	       {
		    E TE, TJ, T16, T11;
		    TE = FNMS(KP500000000, Tf, Tc);
		    TI = TE + TH;
		    T1z = TE - TH;
		    TJ = FNMS(KP500000000, Tk, Th);
		    TN = TJ + TM;
		    T1A = TJ - TM;
		    T16 = FMA(KP500000000, T14, T15);
		    T17 = T13 - T16;
		    T1I = T13 + T16;
		    T11 = FMA(KP500000000, TZ, T10);
		    T12 = TY + T11;
		    T1H = T11 - TY;
		    {
			 E T1e, T1f, Tg, Tl;
			 T1e = T10 - TZ;
			 T1f = T14 - T15;
			 T1g = T1e + T1f;
			 T1S = T1e - T1f;
			 Tg = Tc + Tf;
			 Tl = Th + Tk;
			 Tm = Tg + Tl;
			 T1O = Tg - Tl;
		    }
	       }
	  }
	  {
	       E Tn, T1h, TP, T1p, T19, T1r, T1n, T1t;
	       Tn = Tb + Tm;
	       T1h = T1d + T1g;
	       {
		    E TD, TO, TX, T18;
		    TD = Tv - TC;
		    TO = TI - TN;
		    TP = TD + TO;
		    T1p = TD - TO;
		    TX = TT - TW;
		    T18 = T12 - T17;
		    T19 = TX - T18;
		    T1r = TX + T18;
		    {
			 E T1k, T1m, T1j, T1l;
			 T1k = Tb - Tm;
			 T1m = T1d - T1g;
			 T1j = W[10];
			 T1l = W[11];
			 T1n = FNMS(T1l, T1m, T1j * T1k);
			 T1t = FMA(T1l, T1k, T1j * T1m);
		    }
	       }
	       {
		    E T1a, T1i, To, TQ;
		    To = W[0];
		    TQ = W[1];
		    T1a = FMA(To, TP, TQ * T19);
		    T1i = FNMS(TQ, TP, To * T19);
		    Rp[0] = Tn - T1a;
		    Ip[0] = T1h + T1i;
		    Rm[0] = Tn + T1a;
		    Im[0] = T1i - T1h;
	       }
	       {
		    E T1s, T1u, T1o, T1q;
		    T1o = W[12];
		    T1q = W[13];
		    T1s = FMA(T1o, T1p, T1q * T1r);
		    T1u = FNMS(T1q, T1p, T1o * T1r);
		    Rp[WS(rs, 3)] = T1n - T1s;
		    Ip[WS(rs, 3)] = T1t + T1u;
		    Rm[WS(rs, 3)] = T1n + T1s;
		    Im[WS(rs, 3)] = T1u - T1t;
	       }
	  }
	  {
	       E T1C, T1Y, T1K, T20, T1U, T1V, T26, T27;
	       {
		    E T1y, T1B, T1G, T1J;
		    T1y = T1w + T1x;
		    T1B = T1z + T1A;
		    T1C = T1y - T1B;
		    T1Y = T1y + T1B;
		    T1G = T1E + T1F;
		    T1J = T1H - T1I;
		    T1K = T1G - T1J;
		    T20 = T1G + T1J;
	       }
	       {
		    E T1P, T1T, T1M, T1Q;
		    T1P = T1N - T1O;
		    T1T = T1R + T1S;
		    T1M = W[4];
		    T1Q = W[5];
		    T1U = FMA(T1M, T1P, T1Q * T1T);
		    T1V = FNMS(T1Q, T1P, T1M * T1T);
	       }
	       {
		    E T23, T25, T22, T24;
		    T23 = T1O + T1N;
		    T25 = T1R - T1S;
		    T22 = W[16];
		    T24 = W[17];
		    T26 = FMA(T22, T23, T24 * T25);
		    T27 = FNMS(T24, T23, T22 * T25);
	       }
	       {
		    E T1L, T1W, T1v, T1D;
		    T1v = W[2];
		    T1D = W[3];
		    T1L = FNMS(T1D, T1K, T1v * T1C);
		    T1W = FMA(T1D, T1C, T1v * T1K);
		    Rp[WS(rs, 1)] = T1L - T1U;
		    Ip[WS(rs, 1)] = T1V + T1W;
		    Rm[WS(rs, 1)] = T1U + T1L;
		    Im[WS(rs, 1)] = T1V - T1W;
	       }
	       {
		    E T21, T28, T1X, T1Z;
		    T1X = W[14];
		    T1Z = W[15];
		    T21 = FNMS(T1Z, T20, T1X * T1Y);
		    T28 = FMA(T1Z, T1Y, T1X * T20);
		    Rp[WS(rs, 4)] = T21 - T26;
		    Ip[WS(rs, 4)] = T27 + T28;
		    Rm[WS(rs, 4)] = T26 + T21;
		    Im[WS(rs, 4)] = T27 - T28;
	       }
	  }
	  {
	       E T2c, T2u, T2p, T2B, T2g, T2w, T2l, T2z;
	       {
		    E T2a, T2b, T2n, T2o;
		    T2a = TT + TW;
		    T2b = TI + TN;
		    T2c = T2a + T2b;
		    T2u = T2a - T2b;
		    T2n = T1w - T1x;
		    T2o = T1H + T1I;
		    T2p = T2n - T2o;
		    T2B = T2n + T2o;
	       }
	       {
		    E T2e, T2f, T2j, T2k;
		    T2e = Tv + TC;
		    T2f = T12 + T17;
		    T2g = T2e + T2f;
		    T2w = T2e - T2f;
		    T2j = T1E - T1F;
		    T2k = T1z - T1A;
		    T2l = T2j + T2k;
		    T2z = T2j - T2k;
	       }
	       {
		    E T2h, T2r, T2q, T2s;
		    {
			 E T29, T2d, T2i, T2m;
			 T29 = W[6];
			 T2d = W[7];
			 T2h = FNMS(T2d, T2g, T29 * T2c);
			 T2r = FMA(T2d, T2c, T29 * T2g);
			 T2i = W[8];
			 T2m = W[9];
			 T2q = FMA(T2i, T2l, T2m * T2p);
			 T2s = FNMS(T2m, T2l, T2i * T2p);
		    }
		    Rp[WS(rs, 2)] = T2h - T2q;
		    Ip[WS(rs, 2)] = T2r + T2s;
		    Rm[WS(rs, 2)] = T2h + T2q;
		    Im[WS(rs, 2)] = T2s - T2r;
	       }
	       {
		    E T2x, T2D, T2C, T2E;
		    {
			 E T2t, T2v, T2y, T2A;
			 T2t = W[18];
			 T2v = W[19];
			 T2x = FNMS(T2v, T2w, T2t * T2u);
			 T2D = FMA(T2v, T2u, T2t * T2w);
			 T2y = W[20];
			 T2A = W[21];
			 T2C = FMA(T2y, T2z, T2A * T2B);
			 T2E = FNMS(T2A, T2z, T2y * T2B);
		    }
		    Rp[WS(rs, 5)] = T2x - T2C;
		    Ip[WS(rs, 5)] = T2D + T2E;
		    Rm[WS(rs, 5)] = T2x + T2C;
		    Im[WS(rs, 5)] = T2E - T2D;
	       }
	  }
     }
}

static const tw_instr twinstr[] = {
     {TW_FULL, 1, 12},
     {TW_NEXT, 1, 0}
};

static const hc2c_desc desc = { 12, "hc2cbdft_12", twinstr, &GENUS, {112, 30, 30, 0} };

void X(codelet_hc2cbdft_12) (planner *p) {
     X(khc2c_register) (p, hc2cbdft_12, &desc, HC2C_VIA_DFT);
}
#endif				/* HAVE_FMA */