view Lib/fftw-3.2.1/rdft/scalar/r2cb/hc2cb_16.c @ 0:25bf17994ef1

First commit. VS2013, Codeblocks and Mac OSX configuration
author Geogaddi\David <d.m.ronan@qmul.ac.uk>
date Thu, 09 Jul 2015 01:12:16 +0100
parents
children
line wrap: on
line source
/*
 * Copyright (c) 2003, 2007-8 Matteo Frigo
 * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Mon Feb  9 19:55:58 EST 2009 */

#include "codelet-rdft.h"

#ifdef HAVE_FMA

/* Generated by: ../../../genfft/gen_hc2c -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 16 -dif -name hc2cb_16 -include hc2cb.h */

/*
 * This function contains 174 FP additions, 100 FP multiplications,
 * (or, 104 additions, 30 multiplications, 70 fused multiply/add),
 * 78 stack variables, 3 constants, and 64 memory accesses
 */
#include "hc2cb.h"

static void hc2cb_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
     DK(KP923879532, +0.923879532511286756128183189396788286822416626);
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
     DK(KP414213562, +0.414213562373095048801688724209698078569671875);
     INT m;
     for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 30, MAKE_VOLATILE_STRIDE(rs)) {
	  E T1I, T1L, T1K, T1M, T1J;
	  {
	       E T1O, TA, T1h, T21, T3b, T2T, T3D, T3r, T1k, T1P, T3y, Tf, T36, T2A, T22;
	       E TL, T2F, T2U, T3u, T3z, T2K, T2V, T12, Tu, T3E, TX, T1n, T17, T1T, T24;
	       E T1W, T25;
	       {
		    E T2z, TF, TK, T2w;
		    {
			 E Tw, T3, T2Q, T1g, T1d, T6, T2R, Tz, Tb, TB, Ta, T2y, TE, Tc, TH;
			 E TI;
			 {
			      E T4, T5, Tx, Ty;
			      {
				   E T1, T2, T1e, T1f;
				   T1 = Rp[0];
				   T2 = Rm[WS(rs, 7)];
				   T1e = Ip[0];
				   T1f = Im[WS(rs, 7)];
				   T4 = Rp[WS(rs, 4)];
				   Tw = T1 - T2;
				   T3 = T1 + T2;
				   T2Q = T1e - T1f;
				   T1g = T1e + T1f;
				   T5 = Rm[WS(rs, 3)];
				   Tx = Ip[WS(rs, 4)];
				   Ty = Im[WS(rs, 3)];
			      }
			      {
				   E T8, T9, TC, TD;
				   T8 = Rp[WS(rs, 2)];
				   T1d = T4 - T5;
				   T6 = T4 + T5;
				   T2R = Tx - Ty;
				   Tz = Tx + Ty;
				   T9 = Rm[WS(rs, 5)];
				   TC = Ip[WS(rs, 2)];
				   TD = Im[WS(rs, 5)];
				   Tb = Rm[WS(rs, 1)];
				   TB = T8 - T9;
				   Ta = T8 + T9;
				   T2y = TC - TD;
				   TE = TC + TD;
				   Tc = Rp[WS(rs, 6)];
				   TH = Ip[WS(rs, 6)];
				   TI = Im[WS(rs, 1)];
			      }
			 }
			 {
			      E TG, T2x, TJ, Te, T2P, T2S, T3p, Td;
			      T1O = Tw + Tz;
			      TA = Tw - Tz;
			      TG = Tb - Tc;
			      Td = Tb + Tc;
			      T2x = TH - TI;
			      TJ = TH + TI;
			      T1h = T1d + T1g;
			      T21 = T1g - T1d;
			      Te = Ta + Td;
			      T2P = Ta - Td;
			      T2S = T2Q - T2R;
			      T3p = T2Q + T2R;
			      {
				   E T1i, T1j, T3q, T7;
				   T3q = T2y + T2x;
				   T2z = T2x - T2y;
				   TF = TB - TE;
				   T1i = TB + TE;
				   T3b = T2S - T2P;
				   T2T = T2P + T2S;
				   TK = TG - TJ;
				   T1j = TG + TJ;
				   T3D = T3p - T3q;
				   T3r = T3p + T3q;
				   T2w = T3 - T6;
				   T7 = T3 + T6;
				   T1k = T1i - T1j;
				   T1P = T1i + T1j;
				   T3y = T7 - Te;
				   Tf = T7 + Te;
			      }
			 }
		    }
		    {
			 E T13, Ti, T2C, T11, TY, Tl, T2D, T16, Tq, TS, Tp, T2H, TQ, Tr, TT;
			 E TU;
			 {
			      E Tj, Tk, T14, T15;
			      {
				   E Tg, Th, TZ, T10;
				   Tg = Rp[WS(rs, 1)];
				   T36 = T2w - T2z;
				   T2A = T2w + T2z;
				   T22 = TF - TK;
				   TL = TF + TK;
				   Th = Rm[WS(rs, 6)];
				   TZ = Ip[WS(rs, 1)];
				   T10 = Im[WS(rs, 6)];
				   Tj = Rp[WS(rs, 5)];
				   T13 = Tg - Th;
				   Ti = Tg + Th;
				   T2C = TZ - T10;
				   T11 = TZ + T10;
				   Tk = Rm[WS(rs, 2)];
				   T14 = Ip[WS(rs, 5)];
				   T15 = Im[WS(rs, 2)];
			      }
			      {
				   E Tn, To, TO, TP;
				   Tn = Rm[0];
				   TY = Tj - Tk;
				   Tl = Tj + Tk;
				   T2D = T14 - T15;
				   T16 = T14 + T15;
				   To = Rp[WS(rs, 7)];
				   TO = Ip[WS(rs, 7)];
				   TP = Im[0];
				   Tq = Rp[WS(rs, 3)];
				   TS = Tn - To;
				   Tp = Tn + To;
				   T2H = TO - TP;
				   TQ = TO + TP;
				   Tr = Rm[WS(rs, 4)];
				   TT = Ip[WS(rs, 3)];
				   TU = Im[WS(rs, 4)];
			      }
			 }
			 {
			      E TN, TV, Tm, Tt;
			      {
				   E T2E, T3s, Ts, T2B, T3t, T2J, T2I, T2G;
				   T2E = T2C - T2D;
				   T3s = T2C + T2D;
				   TN = Tq - Tr;
				   Ts = Tq + Tr;
				   T2I = TT - TU;
				   TV = TT + TU;
				   T2B = Ti - Tl;
				   Tm = Ti + Tl;
				   T3t = T2H + T2I;
				   T2J = T2H - T2I;
				   Tt = Tp + Ts;
				   T2G = Tp - Ts;
				   T2F = T2B - T2E;
				   T2U = T2B + T2E;
				   T3u = T3s + T3t;
				   T3z = T3t - T3s;
				   T2K = T2G + T2J;
				   T2V = T2J - T2G;
			      }
			      {
				   E T1U, T1V, T1R, T1S, TR, TW;
				   TR = TN - TQ;
				   T1U = TN + TQ;
				   T1V = TS + TV;
				   TW = TS - TV;
				   T1R = T11 - TY;
				   T12 = TY + T11;
				   Tu = Tm + Tt;
				   T3E = Tm - Tt;
				   TX = FNMS(KP414213562, TW, TR);
				   T1n = FMA(KP414213562, TR, TW);
				   T17 = T13 - T16;
				   T1S = T13 + T16;
				   T1T = FNMS(KP414213562, T1S, T1R);
				   T24 = FMA(KP414213562, T1R, T1S);
				   T1W = FNMS(KP414213562, T1V, T1U);
				   T25 = FMA(KP414213562, T1U, T1V);
			      }
			 }
		    }
	       }
	       {
		    E T18, T1m, T2W, T2L, T3j, T3i, T3h;
		    {
			 E T3m, T3v, T3l, T3o;
			 Rp[0] = Tf + Tu;
			 T18 = FMA(KP414213562, T17, T12);
			 T1m = FNMS(KP414213562, T12, T17);
			 T3m = Tf - Tu;
			 T3v = T3r - T3u;
			 T3l = W[14];
			 T3o = W[15];
			 Rm[0] = T3r + T3u;
			 {
			      E T3A, T3I, T3L, T3F, T3C, T3G, T3B, T3x, T3n, T3w, T3H, T3K;
			      T3A = T3y - T3z;
			      T3I = T3y + T3z;
			      T3n = T3l * T3m;
			      T3w = T3o * T3m;
			      T3L = T3E + T3D;
			      T3F = T3D - T3E;
			      T3x = W[22];
			      Rp[WS(rs, 4)] = FNMS(T3o, T3v, T3n);
			      Rm[WS(rs, 4)] = FMA(T3l, T3v, T3w);
			      T3C = W[23];
			      T3G = T3x * T3F;
			      T3B = T3x * T3A;
			      Rm[WS(rs, 6)] = FMA(T3C, T3A, T3G);
			      Rp[WS(rs, 6)] = FNMS(T3C, T3F, T3B);
			      T3H = W[6];
			      T3K = W[7];
			      {
				   E T3g, T38, T3d, T35, T3a;
				   {
					E T37, T3c, T3M, T3J;
					T37 = T2V - T2U;
					T2W = T2U + T2V;
					T2L = T2F + T2K;
					T3c = T2F - T2K;
					T3M = T3H * T3L;
					T3J = T3H * T3I;
					T3g = FMA(KP707106781, T37, T36);
					T38 = FNMS(KP707106781, T37, T36);
					Rm[WS(rs, 2)] = FMA(T3K, T3I, T3M);
					Rp[WS(rs, 2)] = FNMS(T3K, T3L, T3J);
					T3d = FNMS(KP707106781, T3c, T3b);
					T3j = FMA(KP707106781, T3c, T3b);
				   }
				   T35 = W[26];
				   T3a = W[27];
				   {
					E T3f, T3e, T39, T3k;
					T3f = W[10];
					T3i = W[11];
					T3e = T35 * T3d;
					T39 = T35 * T38;
					T3k = T3f * T3j;
					T3h = T3f * T3g;
					Rm[WS(rs, 7)] = FMA(T3a, T38, T3e);
					Rp[WS(rs, 7)] = FNMS(T3a, T3d, T39);
					Rm[WS(rs, 3)] = FMA(T3i, T3g, T3k);
				   }
			      }
			 }
		    }
		    Rp[WS(rs, 3)] = FNMS(T3i, T3j, T3h);
		    {
			 E T2g, T2m, T2l, T2h, T2d, T29, T2c, T2b, T2e;
			 {
			      E T33, T2Z, T32, T31, T34;
			      {
				   E T2v, T30, T2M, T2X, T2O, T2N, T2Y;
				   T2v = W[18];
				   T30 = FMA(KP707106781, T2L, T2A);
				   T2M = FNMS(KP707106781, T2L, T2A);
				   T33 = FMA(KP707106781, T2W, T2T);
				   T2X = FNMS(KP707106781, T2W, T2T);
				   T2O = W[19];
				   T2N = T2v * T2M;
				   T2Z = W[2];
				   T32 = W[3];
				   T2Y = T2O * T2M;
				   Rp[WS(rs, 5)] = FNMS(T2O, T2X, T2N);
				   T31 = T2Z * T30;
				   T34 = T32 * T30;
				   Rm[WS(rs, 5)] = FMA(T2v, T2X, T2Y);
			      }
			      {
				   E T1Q, T1X, T23, T26;
				   T2g = FMA(KP707106781, T1P, T1O);
				   T1Q = FNMS(KP707106781, T1P, T1O);
				   Rp[WS(rs, 1)] = FNMS(T32, T33, T31);
				   Rm[WS(rs, 1)] = FMA(T2Z, T33, T34);
				   T1X = T1T + T1W;
				   T2m = T1W - T1T;
				   T2l = FNMS(KP707106781, T22, T21);
				   T23 = FMA(KP707106781, T22, T21);
				   T26 = T24 - T25;
				   T2h = T24 + T25;
				   {
					E T1N, T2a, T1Y, T27, T20, T1Z, T28;
					T1N = W[20];
					T2a = FNMS(KP923879532, T1X, T1Q);
					T1Y = FMA(KP923879532, T1X, T1Q);
					T2d = FMA(KP923879532, T26, T23);
					T27 = FNMS(KP923879532, T26, T23);
					T20 = W[21];
					T1Z = T1N * T1Y;
					T29 = W[4];
					T2c = W[5];
					T28 = T20 * T1Y;
					Ip[WS(rs, 5)] = FNMS(T20, T27, T1Z);
					T2b = T29 * T2a;
					T2e = T2c * T2a;
					Im[WS(rs, 5)] = FMA(T1N, T27, T28);
				   }
			      }
			 }
			 {
			      E T1y, T1E, T1D, T1z, T1v, T1r, T1u, T1t, T1w;
			      {
				   E TM, T19, T1l, T1o;
				   T1y = FMA(KP707106781, TL, TA);
				   TM = FNMS(KP707106781, TL, TA);
				   Ip[WS(rs, 1)] = FNMS(T2c, T2d, T2b);
				   Im[WS(rs, 1)] = FMA(T29, T2d, T2e);
				   T19 = TX - T18;
				   T1E = T18 + TX;
				   T1D = FMA(KP707106781, T1k, T1h);
				   T1l = FNMS(KP707106781, T1k, T1h);
				   T1o = T1m - T1n;
				   T1z = T1m + T1n;
				   {
					E Tv, T1s, T1a, T1p, T1c, T1b, T1q;
					Tv = W[24];
					T1s = FMA(KP923879532, T19, TM);
					T1a = FNMS(KP923879532, T19, TM);
					T1v = FMA(KP923879532, T1o, T1l);
					T1p = FNMS(KP923879532, T1o, T1l);
					T1c = W[25];
					T1b = Tv * T1a;
					T1r = W[8];
					T1u = W[9];
					T1q = T1c * T1a;
					Ip[WS(rs, 6)] = FNMS(T1c, T1p, T1b);
					T1t = T1r * T1s;
					T1w = T1u * T1s;
					Im[WS(rs, 6)] = FMA(Tv, T1p, T1q);
				   }
			      }
			      {
				   E T2q, T2t, T2s, T2u, T2r;
				   Ip[WS(rs, 2)] = FNMS(T1u, T1v, T1t);
				   Im[WS(rs, 2)] = FMA(T1r, T1v, T1w);
				   {
					E T2f, T2i, T2n, T2k, T2j, T2p, T2o;
					T2f = W[12];
					T2q = FMA(KP923879532, T2h, T2g);
					T2i = FNMS(KP923879532, T2h, T2g);
					T2t = FNMS(KP923879532, T2m, T2l);
					T2n = FMA(KP923879532, T2m, T2l);
					T2k = W[13];
					T2j = T2f * T2i;
					T2p = W[28];
					T2o = T2f * T2n;
					T2s = W[29];
					Ip[WS(rs, 3)] = FNMS(T2k, T2n, T2j);
					T2u = T2p * T2t;
					T2r = T2p * T2q;
					Im[WS(rs, 3)] = FMA(T2k, T2i, T2o);
				   }
				   Im[WS(rs, 7)] = FMA(T2s, T2q, T2u);
				   Ip[WS(rs, 7)] = FNMS(T2s, T2t, T2r);
				   {
					E T1x, T1A, T1F, T1C, T1B, T1H, T1G;
					T1x = W[16];
					T1I = FMA(KP923879532, T1z, T1y);
					T1A = FNMS(KP923879532, T1z, T1y);
					T1L = FMA(KP923879532, T1E, T1D);
					T1F = FNMS(KP923879532, T1E, T1D);
					T1C = W[17];
					T1B = T1x * T1A;
					T1H = W[0];
					T1G = T1x * T1F;
					T1K = W[1];
					Ip[WS(rs, 4)] = FNMS(T1C, T1F, T1B);
					T1M = T1H * T1L;
					T1J = T1H * T1I;
					Im[WS(rs, 4)] = FMA(T1C, T1A, T1G);
				   }
			      }
			 }
		    }
	       }
	  }
	  Im[0] = FMA(T1K, T1I, T1M);
	  Ip[0] = FNMS(T1K, T1L, T1J);
     }
}

static const tw_instr twinstr[] = {
     {TW_FULL, 1, 16},
     {TW_NEXT, 1, 0}
};

static const hc2c_desc desc = { 16, "hc2cb_16", twinstr, &GENUS, {104, 30, 70, 0} };

void X(codelet_hc2cb_16) (planner *p) {
     X(khc2c_register) (p, hc2cb_16, &desc, HC2C_VIA_RDFT);
}
#else				/* HAVE_FMA */

/* Generated by: ../../../genfft/gen_hc2c -compact -variables 4 -pipeline-latency 4 -sign 1 -n 16 -dif -name hc2cb_16 -include hc2cb.h */

/*
 * This function contains 174 FP additions, 84 FP multiplications,
 * (or, 136 additions, 46 multiplications, 38 fused multiply/add),
 * 50 stack variables, 3 constants, and 64 memory accesses
 */
#include "hc2cb.h"

static void hc2cb_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
     DK(KP382683432, +0.382683432365089771728459984030398866761344562);
     DK(KP923879532, +0.923879532511286756128183189396788286822416626);
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
     INT m;
     for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 30, MAKE_VOLATILE_STRIDE(rs)) {
	  E T7, T2K, T2W, Tw, T17, T1S, T2k, T1w, Te, TD, T1x, T10, T2n, T2L, T1Z;
	  E T2X, Tm, T1z, TN, T19, T2e, T2p, T2P, T2Z, Tt, T1A, TW, T1a, T27, T2q;
	  E T2S, T30;
	  {
	       E T3, T1Q, T13, T2j, T6, T2i, T16, T1R;
	       {
		    E T1, T2, T11, T12;
		    T1 = Rp[0];
		    T2 = Rm[WS(rs, 7)];
		    T3 = T1 + T2;
		    T1Q = T1 - T2;
		    T11 = Ip[0];
		    T12 = Im[WS(rs, 7)];
		    T13 = T11 - T12;
		    T2j = T11 + T12;
	       }
	       {
		    E T4, T5, T14, T15;
		    T4 = Rp[WS(rs, 4)];
		    T5 = Rm[WS(rs, 3)];
		    T6 = T4 + T5;
		    T2i = T4 - T5;
		    T14 = Ip[WS(rs, 4)];
		    T15 = Im[WS(rs, 3)];
		    T16 = T14 - T15;
		    T1R = T14 + T15;
	       }
	       T7 = T3 + T6;
	       T2K = T1Q + T1R;
	       T2W = T2j - T2i;
	       Tw = T3 - T6;
	       T17 = T13 - T16;
	       T1S = T1Q - T1R;
	       T2k = T2i + T2j;
	       T1w = T13 + T16;
	  }
	  {
	       E Ta, T1T, TC, T1U, Td, T1W, Tz, T1X;
	       {
		    E T8, T9, TA, TB;
		    T8 = Rp[WS(rs, 2)];
		    T9 = Rm[WS(rs, 5)];
		    Ta = T8 + T9;
		    T1T = T8 - T9;
		    TA = Ip[WS(rs, 2)];
		    TB = Im[WS(rs, 5)];
		    TC = TA - TB;
		    T1U = TA + TB;
	       }
	       {
		    E Tb, Tc, Tx, Ty;
		    Tb = Rm[WS(rs, 1)];
		    Tc = Rp[WS(rs, 6)];
		    Td = Tb + Tc;
		    T1W = Tb - Tc;
		    Tx = Ip[WS(rs, 6)];
		    Ty = Im[WS(rs, 1)];
		    Tz = Tx - Ty;
		    T1X = Tx + Ty;
	       }
	       Te = Ta + Td;
	       TD = Tz - TC;
	       T1x = TC + Tz;
	       T10 = Ta - Td;
	       {
		    E T2l, T2m, T1V, T1Y;
		    T2l = T1T + T1U;
		    T2m = T1W + T1X;
		    T2n = KP707106781 * (T2l - T2m);
		    T2L = KP707106781 * (T2l + T2m);
		    T1V = T1T - T1U;
		    T1Y = T1W - T1X;
		    T1Z = KP707106781 * (T1V + T1Y);
		    T2X = KP707106781 * (T1V - T1Y);
	       }
	  }
	  {
	       E Ti, T2b, TI, T29, Tl, T28, TL, T2c, TF, TM;
	       {
		    E Tg, Th, TG, TH;
		    Tg = Rp[WS(rs, 1)];
		    Th = Rm[WS(rs, 6)];
		    Ti = Tg + Th;
		    T2b = Tg - Th;
		    TG = Ip[WS(rs, 1)];
		    TH = Im[WS(rs, 6)];
		    TI = TG - TH;
		    T29 = TG + TH;
	       }
	       {
		    E Tj, Tk, TJ, TK;
		    Tj = Rp[WS(rs, 5)];
		    Tk = Rm[WS(rs, 2)];
		    Tl = Tj + Tk;
		    T28 = Tj - Tk;
		    TJ = Ip[WS(rs, 5)];
		    TK = Im[WS(rs, 2)];
		    TL = TJ - TK;
		    T2c = TJ + TK;
	       }
	       Tm = Ti + Tl;
	       T1z = TI + TL;
	       TF = Ti - Tl;
	       TM = TI - TL;
	       TN = TF - TM;
	       T19 = TF + TM;
	       {
		    E T2a, T2d, T2N, T2O;
		    T2a = T28 + T29;
		    T2d = T2b - T2c;
		    T2e = FMA(KP923879532, T2a, KP382683432 * T2d);
		    T2p = FNMS(KP382683432, T2a, KP923879532 * T2d);
		    T2N = T2b + T2c;
		    T2O = T29 - T28;
		    T2P = FNMS(KP923879532, T2O, KP382683432 * T2N);
		    T2Z = FMA(KP382683432, T2O, KP923879532 * T2N);
	       }
	  }
	  {
	       E Tp, T24, TR, T22, Ts, T21, TU, T25, TO, TV;
	       {
		    E Tn, To, TP, TQ;
		    Tn = Rm[0];
		    To = Rp[WS(rs, 7)];
		    Tp = Tn + To;
		    T24 = Tn - To;
		    TP = Ip[WS(rs, 7)];
		    TQ = Im[0];
		    TR = TP - TQ;
		    T22 = TP + TQ;
	       }
	       {
		    E Tq, Tr, TS, TT;
		    Tq = Rp[WS(rs, 3)];
		    Tr = Rm[WS(rs, 4)];
		    Ts = Tq + Tr;
		    T21 = Tq - Tr;
		    TS = Ip[WS(rs, 3)];
		    TT = Im[WS(rs, 4)];
		    TU = TS - TT;
		    T25 = TS + TT;
	       }
	       Tt = Tp + Ts;
	       T1A = TR + TU;
	       TO = Tp - Ts;
	       TV = TR - TU;
	       TW = TO + TV;
	       T1a = TV - TO;
	       {
		    E T23, T26, T2Q, T2R;
		    T23 = T21 - T22;
		    T26 = T24 - T25;
		    T27 = FNMS(KP382683432, T26, KP923879532 * T23);
		    T2q = FMA(KP382683432, T23, KP923879532 * T26);
		    T2Q = T24 + T25;
		    T2R = T21 + T22;
		    T2S = FNMS(KP923879532, T2R, KP382683432 * T2Q);
		    T30 = FMA(KP382683432, T2R, KP923879532 * T2Q);
	       }
	  }
	  {
	       E Tf, Tu, T1u, T1y, T1B, T1C, T1t, T1v;
	       Tf = T7 + Te;
	       Tu = Tm + Tt;
	       T1u = Tf - Tu;
	       T1y = T1w + T1x;
	       T1B = T1z + T1A;
	       T1C = T1y - T1B;
	       Rp[0] = Tf + Tu;
	       Rm[0] = T1y + T1B;
	       T1t = W[14];
	       T1v = W[15];
	       Rp[WS(rs, 4)] = FNMS(T1v, T1C, T1t * T1u);
	       Rm[WS(rs, 4)] = FMA(T1v, T1u, T1t * T1C);
	  }
	  {
	       E T2U, T34, T32, T36;
	       {
		    E T2M, T2T, T2Y, T31;
		    T2M = T2K - T2L;
		    T2T = T2P + T2S;
		    T2U = T2M - T2T;
		    T34 = T2M + T2T;
		    T2Y = T2W + T2X;
		    T31 = T2Z - T30;
		    T32 = T2Y - T31;
		    T36 = T2Y + T31;
	       }
	       {
		    E T2J, T2V, T33, T35;
		    T2J = W[20];
		    T2V = W[21];
		    Ip[WS(rs, 5)] = FNMS(T2V, T32, T2J * T2U);
		    Im[WS(rs, 5)] = FMA(T2V, T2U, T2J * T32);
		    T33 = W[4];
		    T35 = W[5];
		    Ip[WS(rs, 1)] = FNMS(T35, T36, T33 * T34);
		    Im[WS(rs, 1)] = FMA(T35, T34, T33 * T36);
	       }
	  }
	  {
	       E T3a, T3g, T3e, T3i;
	       {
		    E T38, T39, T3c, T3d;
		    T38 = T2K + T2L;
		    T39 = T2Z + T30;
		    T3a = T38 - T39;
		    T3g = T38 + T39;
		    T3c = T2W - T2X;
		    T3d = T2P - T2S;
		    T3e = T3c + T3d;
		    T3i = T3c - T3d;
	       }
	       {
		    E T37, T3b, T3f, T3h;
		    T37 = W[12];
		    T3b = W[13];
		    Ip[WS(rs, 3)] = FNMS(T3b, T3e, T37 * T3a);
		    Im[WS(rs, 3)] = FMA(T37, T3e, T3b * T3a);
		    T3f = W[28];
		    T3h = W[29];
		    Ip[WS(rs, 7)] = FNMS(T3h, T3i, T3f * T3g);
		    Im[WS(rs, 7)] = FMA(T3f, T3i, T3h * T3g);
	       }
	  }
	  {
	       E TY, T1e, T1c, T1g;
	       {
		    E TE, TX, T18, T1b;
		    TE = Tw + TD;
		    TX = KP707106781 * (TN + TW);
		    TY = TE - TX;
		    T1e = TE + TX;
		    T18 = T10 + T17;
		    T1b = KP707106781 * (T19 + T1a);
		    T1c = T18 - T1b;
		    T1g = T18 + T1b;
	       }
	       {
		    E Tv, TZ, T1d, T1f;
		    Tv = W[18];
		    TZ = W[19];
		    Rp[WS(rs, 5)] = FNMS(TZ, T1c, Tv * TY);
		    Rm[WS(rs, 5)] = FMA(TZ, TY, Tv * T1c);
		    T1d = W[2];
		    T1f = W[3];
		    Rp[WS(rs, 1)] = FNMS(T1f, T1g, T1d * T1e);
		    Rm[WS(rs, 1)] = FMA(T1f, T1e, T1d * T1g);
	       }
	  }
	  {
	       E T1k, T1q, T1o, T1s;
	       {
		    E T1i, T1j, T1m, T1n;
		    T1i = Tw - TD;
		    T1j = KP707106781 * (T1a - T19);
		    T1k = T1i - T1j;
		    T1q = T1i + T1j;
		    T1m = T17 - T10;
		    T1n = KP707106781 * (TN - TW);
		    T1o = T1m - T1n;
		    T1s = T1m + T1n;
	       }
	       {
		    E T1h, T1l, T1p, T1r;
		    T1h = W[26];
		    T1l = W[27];
		    Rp[WS(rs, 7)] = FNMS(T1l, T1o, T1h * T1k);
		    Rm[WS(rs, 7)] = FMA(T1h, T1o, T1l * T1k);
		    T1p = W[10];
		    T1r = W[11];
		    Rp[WS(rs, 3)] = FNMS(T1r, T1s, T1p * T1q);
		    Rm[WS(rs, 3)] = FMA(T1p, T1s, T1r * T1q);
	       }
	  }
	  {
	       E T2g, T2u, T2s, T2w;
	       {
		    E T20, T2f, T2o, T2r;
		    T20 = T1S - T1Z;
		    T2f = T27 - T2e;
		    T2g = T20 - T2f;
		    T2u = T20 + T2f;
		    T2o = T2k - T2n;
		    T2r = T2p - T2q;
		    T2s = T2o - T2r;
		    T2w = T2o + T2r;
	       }
	       {
		    E T1P, T2h, T2t, T2v;
		    T1P = W[24];
		    T2h = W[25];
		    Ip[WS(rs, 6)] = FNMS(T2h, T2s, T1P * T2g);
		    Im[WS(rs, 6)] = FMA(T2h, T2g, T1P * T2s);
		    T2t = W[8];
		    T2v = W[9];
		    Ip[WS(rs, 2)] = FNMS(T2v, T2w, T2t * T2u);
		    Im[WS(rs, 2)] = FMA(T2v, T2u, T2t * T2w);
	       }
	  }
	  {
	       E T2A, T2G, T2E, T2I;
	       {
		    E T2y, T2z, T2C, T2D;
		    T2y = T1S + T1Z;
		    T2z = T2p + T2q;
		    T2A = T2y - T2z;
		    T2G = T2y + T2z;
		    T2C = T2k + T2n;
		    T2D = T2e + T27;
		    T2E = T2C - T2D;
		    T2I = T2C + T2D;
	       }
	       {
		    E T2x, T2B, T2F, T2H;
		    T2x = W[16];
		    T2B = W[17];
		    Ip[WS(rs, 4)] = FNMS(T2B, T2E, T2x * T2A);
		    Im[WS(rs, 4)] = FMA(T2x, T2E, T2B * T2A);
		    T2F = W[0];
		    T2H = W[1];
		    Ip[0] = FNMS(T2H, T2I, T2F * T2G);
		    Im[0] = FMA(T2F, T2I, T2H * T2G);
	       }
	  }
	  {
	       E T1G, T1M, T1K, T1O;
	       {
		    E T1E, T1F, T1I, T1J;
		    T1E = T7 - Te;
		    T1F = T1A - T1z;
		    T1G = T1E - T1F;
		    T1M = T1E + T1F;
		    T1I = T1w - T1x;
		    T1J = Tm - Tt;
		    T1K = T1I - T1J;
		    T1O = T1J + T1I;
	       }
	       {
		    E T1D, T1H, T1L, T1N;
		    T1D = W[22];
		    T1H = W[23];
		    Rp[WS(rs, 6)] = FNMS(T1H, T1K, T1D * T1G);
		    Rm[WS(rs, 6)] = FMA(T1D, T1K, T1H * T1G);
		    T1L = W[6];
		    T1N = W[7];
		    Rp[WS(rs, 2)] = FNMS(T1N, T1O, T1L * T1M);
		    Rm[WS(rs, 2)] = FMA(T1L, T1O, T1N * T1M);
	       }
	  }
     }
}

static const tw_instr twinstr[] = {
     {TW_FULL, 1, 16},
     {TW_NEXT, 1, 0}
};

static const hc2c_desc desc = { 16, "hc2cb_16", twinstr, &GENUS, {136, 46, 38, 0} };

void X(codelet_hc2cb_16) (planner *p) {
     X(khc2c_register) (p, hc2cb_16, &desc, HC2C_VIA_RDFT);
}
#endif				/* HAVE_FMA */