view Lib/fftw-3.2.1/rdft/scalar/r2cb/hb_7.c @ 0:25bf17994ef1

First commit. VS2013, Codeblocks and Mac OSX configuration
author Geogaddi\David <d.m.ronan@qmul.ac.uk>
date Thu, 09 Jul 2015 01:12:16 +0100
parents
children
line wrap: on
line source
/*
 * Copyright (c) 2003, 2007-8 Matteo Frigo
 * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Mon Feb  9 19:55:19 EST 2009 */

#include "codelet-rdft.h"

#ifdef HAVE_FMA

/* Generated by: ../../../genfft/gen_hc2hc -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 7 -dif -name hb_7 -include hb.h */

/*
 * This function contains 72 FP additions, 66 FP multiplications,
 * (or, 18 additions, 12 multiplications, 54 fused multiply/add),
 * 67 stack variables, 6 constants, and 28 memory accesses
 */
#include "hb.h"

static void hb_7(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
{
     DK(KP974927912, +0.974927912181823607018131682993931217232785801);
     DK(KP900968867, +0.900968867902419126236102319507445051165919162);
     DK(KP801937735, +0.801937735804838252472204639014890102331838324);
     DK(KP692021471, +0.692021471630095869627814897002069140197260599);
     DK(KP356895867, +0.356895867892209443894399510021300583399127187);
     DK(KP554958132, +0.554958132087371191422194871006410481067288862);
     INT m;
     for (m = mb, W = W + ((mb - 1) * 12); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 12, MAKE_VOLATILE_STRIDE(rs)) {
	  E T1q, T1p, T1t, T1r, T1s, T1u;
	  {
	       E T1, T4, TC, T7, TB, Tt, TD, Ta, TA, T1l, TZ, T1b, Th, Tw, Td;
	       E TP, Ti, Tj, Tl, Tm, T8, T9, T1a;
	       T1 = cr[0];
	       {
		    E T2, T3, T5, T6;
		    T2 = cr[WS(rs, 1)];
		    T3 = ci[0];
		    T5 = cr[WS(rs, 2)];
		    T6 = ci[WS(rs, 1)];
		    T8 = cr[WS(rs, 3)];
		    T4 = T2 + T3;
		    TC = T2 - T3;
		    T7 = T5 + T6;
		    TB = T5 - T6;
		    T9 = ci[WS(rs, 2)];
	       }
	       Tt = ci[WS(rs, 6)];
	       TD = FNMS(KP554958132, TC, TB);
	       T1a = FNMS(KP356895867, T7, T4);
	       Ta = T8 + T9;
	       TA = T8 - T9;
	       {
		    E Tf, Tg, Tc, TO;
		    Tf = ci[WS(rs, 3)];
		    Tg = cr[WS(rs, 4)];
		    T1l = FMA(KP554958132, TA, TC);
		    TZ = FMA(KP554958132, TB, TA);
		    Tc = FNMS(KP356895867, Ta, T7);
		    TO = FNMS(KP356895867, T4, Ta);
		    T1b = FNMS(KP692021471, T1a, Ta);
		    Th = Tf + Tg;
		    Tw = Tf - Tg;
		    Td = FNMS(KP692021471, Tc, T4);
		    TP = FNMS(KP692021471, TO, T7);
	       }
	       Ti = ci[WS(rs, 4)];
	       Tj = cr[WS(rs, 5)];
	       Tl = ci[WS(rs, 5)];
	       Tm = cr[WS(rs, 6)];
	       {
		    E Ty, TS, TX, T1j, T1e, Tp, Tk, Tv;
		    cr[0] = T1 + T4 + T7 + Ta;
		    Tk = Ti + Tj;
		    Tv = Ti - Tj;
		    {
			 E Tn, Tu, Tx, TR;
			 Tn = Tl + Tm;
			 Tu = Tl - Tm;
			 Tx = FNMS(KP356895867, Tw, Tv);
			 TR = FMA(KP554958132, Tk, Th);
			 {
			      E TW, T1i, T1d, To;
			      TW = FNMS(KP356895867, Tu, Tw);
			      T1i = FNMS(KP356895867, Tv, Tu);
			      T1d = FMA(KP554958132, Th, Tn);
			      To = FNMS(KP554958132, Tn, Tk);
			      Ty = FNMS(KP692021471, Tx, Tu);
			      TS = FNMS(KP801937735, TR, Tn);
			      TX = FNMS(KP692021471, TW, Tv);
			      T1j = FNMS(KP692021471, T1i, Tw);
			      T1e = FMA(KP801937735, T1d, Tk);
			      Tp = FNMS(KP801937735, To, Th);
			      ci[0] = Tt + Tu + Tv + Tw;
			 }
		    }
		    {
			 E TL, TH, TK, TJ, TM, Te, Tz, TE;
			 Te = FNMS(KP900968867, Td, T1);
			 Tz = FNMS(KP900968867, Ty, Tt);
			 TE = FNMS(KP801937735, TD, TA);
			 {
			      E Tb, TI, Tq, TF, Ts, Tr, TG;
			      Tb = W[4];
			      TI = FMA(KP974927912, Tp, Te);
			      Tq = FNMS(KP974927912, Tp, Te);
			      TL = FNMS(KP974927912, TE, Tz);
			      TF = FMA(KP974927912, TE, Tz);
			      Ts = W[5];
			      Tr = Tb * Tq;
			      TH = W[6];
			      TK = W[7];
			      TG = Ts * Tq;
			      cr[WS(rs, 3)] = FNMS(Ts, TF, Tr);
			      TJ = TH * TI;
			      TM = TK * TI;
			      ci[WS(rs, 3)] = FMA(Tb, TF, TG);
			 }
			 {
			      E T14, T13, T17, T15, T16;
			      {
				   E TY, TT, T10, TQ;
				   TQ = FNMS(KP900968867, TP, T1);
				   cr[WS(rs, 4)] = FNMS(TK, TL, TJ);
				   ci[WS(rs, 4)] = FMA(TH, TL, TM);
				   TY = FNMS(KP900968867, TX, Tt);
				   TT = FNMS(KP974927912, TS, TQ);
				   T14 = FMA(KP974927912, TS, TQ);
				   T10 = FNMS(KP801937735, TZ, TC);
				   {
					E TN, TV, T11, TU, T12;
					TN = W[2];
					TV = W[3];
					T13 = W[8];
					T11 = FMA(KP974927912, T10, TY);
					T17 = FNMS(KP974927912, T10, TY);
					TU = TN * TT;
					T12 = TV * TT;
					T15 = T13 * T14;
					T16 = W[9];
					cr[WS(rs, 2)] = FNMS(TV, T11, TU);
					ci[WS(rs, 2)] = FMA(TN, T11, T12);
				   }
			      }
			      {
				   E T1k, T1f, T1m, T1c, T18;
				   T1c = FNMS(KP900968867, T1b, T1);
				   cr[WS(rs, 5)] = FNMS(T16, T17, T15);
				   T18 = T16 * T14;
				   T1k = FNMS(KP900968867, T1j, Tt);
				   T1f = FNMS(KP974927912, T1e, T1c);
				   T1q = FMA(KP974927912, T1e, T1c);
				   ci[WS(rs, 5)] = FMA(T13, T17, T18);
				   T1m = FMA(KP801937735, T1l, TB);
				   {
					E T19, T1h, T1n, T1g, T1o;
					T19 = W[0];
					T1h = W[1];
					T1p = W[10];
					T1t = FNMS(KP974927912, T1m, T1k);
					T1n = FMA(KP974927912, T1m, T1k);
					T1g = T19 * T1f;
					T1o = T1h * T1f;
					T1r = T1p * T1q;
					T1s = W[11];
					cr[WS(rs, 1)] = FNMS(T1h, T1n, T1g);
					ci[WS(rs, 1)] = FMA(T19, T1n, T1o);
				   }
			      }
			 }
		    }
	       }
	  }
	  cr[WS(rs, 6)] = FNMS(T1s, T1t, T1r);
	  T1u = T1s * T1q;
	  ci[WS(rs, 6)] = FMA(T1p, T1t, T1u);
     }
}

static const tw_instr twinstr[] = {
     {TW_FULL, 1, 7},
     {TW_NEXT, 1, 0}
};

static const hc2hc_desc desc = { 7, "hb_7", twinstr, &GENUS, {18, 12, 54, 0} };

void X(codelet_hb_7) (planner *p) {
     X(khc2hc_register) (p, hb_7, &desc);
}
#else				/* HAVE_FMA */

/* Generated by: ../../../genfft/gen_hc2hc -compact -variables 4 -pipeline-latency 4 -sign 1 -n 7 -dif -name hb_7 -include hb.h */

/*
 * This function contains 72 FP additions, 60 FP multiplications,
 * (or, 36 additions, 24 multiplications, 36 fused multiply/add),
 * 36 stack variables, 6 constants, and 28 memory accesses
 */
#include "hb.h"

static void hb_7(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
{
     DK(KP222520933, +0.222520933956314404288902564496794759466355569);
     DK(KP900968867, +0.900968867902419126236102319507445051165919162);
     DK(KP623489801, +0.623489801858733530525004884004239810632274731);
     DK(KP781831482, +0.781831482468029808708444526674057750232334519);
     DK(KP974927912, +0.974927912181823607018131682993931217232785801);
     DK(KP433883739, +0.433883739117558120475768332848358754609990728);
     INT m;
     for (m = mb, W = W + ((mb - 1) * 12); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 12, MAKE_VOLATILE_STRIDE(rs)) {
	  E T1, T4, T7, Ta, Tx, TI, TV, TQ, TE, Tm, Tb, Te, Th, Tk, Tq;
	  E TF, TR, TU, TJ, Tt;
	  {
	       E Tu, Tw, Tv, T2, T3;
	       T1 = cr[0];
	       T2 = cr[WS(rs, 1)];
	       T3 = ci[0];
	       T4 = T2 + T3;
	       Tu = T2 - T3;
	       {
		    E T5, T6, T8, T9;
		    T5 = cr[WS(rs, 2)];
		    T6 = ci[WS(rs, 1)];
		    T7 = T5 + T6;
		    Tw = T5 - T6;
		    T8 = cr[WS(rs, 3)];
		    T9 = ci[WS(rs, 2)];
		    Ta = T8 + T9;
		    Tv = T8 - T9;
	       }
	       Tx = FMA(KP433883739, Tu, KP974927912 * Tv) - (KP781831482 * Tw);
	       TI = FMA(KP781831482, Tu, KP974927912 * Tw) + (KP433883739 * Tv);
	       TV = FNMS(KP781831482, Tv, KP974927912 * Tu) - (KP433883739 * Tw);
	       TQ = FMA(KP623489801, Ta, T1) + FNMA(KP900968867, T7, KP222520933 * T4);
	       TE = FMA(KP623489801, T4, T1) + FNMA(KP900968867, Ta, KP222520933 * T7);
	       Tm = FMA(KP623489801, T7, T1) + FNMA(KP222520933, Ta, KP900968867 * T4);
	  }
	  {
	       E Tp, Tn, To, Tc, Td;
	       Tb = ci[WS(rs, 6)];
	       Tc = ci[WS(rs, 5)];
	       Td = cr[WS(rs, 6)];
	       Te = Tc - Td;
	       Tp = Tc + Td;
	       {
		    E Tf, Tg, Ti, Tj;
		    Tf = ci[WS(rs, 4)];
		    Tg = cr[WS(rs, 5)];
		    Th = Tf - Tg;
		    Tn = Tf + Tg;
		    Ti = ci[WS(rs, 3)];
		    Tj = cr[WS(rs, 4)];
		    Tk = Ti - Tj;
		    To = Ti + Tj;
	       }
	       Tq = FNMS(KP974927912, To, KP781831482 * Tn) - (KP433883739 * Tp);
	       TF = FMA(KP781831482, Tp, KP974927912 * Tn) + (KP433883739 * To);
	       TR = FMA(KP433883739, Tn, KP781831482 * To) - (KP974927912 * Tp);
	       TU = FMA(KP623489801, Tk, Tb) + FNMA(KP900968867, Th, KP222520933 * Te);
	       TJ = FMA(KP623489801, Te, Tb) + FNMA(KP900968867, Tk, KP222520933 * Th);
	       Tt = FMA(KP623489801, Th, Tb) + FNMA(KP222520933, Tk, KP900968867 * Te);
	  }
	  cr[0] = T1 + T4 + T7 + Ta;
	  ci[0] = Tb + Te + Th + Tk;
	  {
	       E Tr, Ty, Tl, Ts;
	       Tr = Tm - Tq;
	       Ty = Tt - Tx;
	       Tl = W[6];
	       Ts = W[7];
	       cr[WS(rs, 4)] = FNMS(Ts, Ty, Tl * Tr);
	       ci[WS(rs, 4)] = FMA(Tl, Ty, Ts * Tr);
	  }
	  {
	       E TY, T10, TX, TZ;
	       TY = TQ + TR;
	       T10 = TV + TU;
	       TX = W[2];
	       TZ = W[3];
	       cr[WS(rs, 2)] = FNMS(TZ, T10, TX * TY);
	       ci[WS(rs, 2)] = FMA(TX, T10, TZ * TY);
	  }
	  {
	       E TA, TC, Tz, TB;
	       TA = Tm + Tq;
	       TC = Tx + Tt;
	       Tz = W[4];
	       TB = W[5];
	       cr[WS(rs, 3)] = FNMS(TB, TC, Tz * TA);
	       ci[WS(rs, 3)] = FMA(Tz, TC, TB * TA);
	  }
	  {
	       E TM, TO, TL, TN;
	       TM = TE + TF;
	       TO = TJ - TI;
	       TL = W[10];
	       TN = W[11];
	       cr[WS(rs, 6)] = FNMS(TN, TO, TL * TM);
	       ci[WS(rs, 6)] = FMA(TL, TO, TN * TM);
	  }
	  {
	       E TS, TW, TP, TT;
	       TS = TQ - TR;
	       TW = TU - TV;
	       TP = W[8];
	       TT = W[9];
	       cr[WS(rs, 5)] = FNMS(TT, TW, TP * TS);
	       ci[WS(rs, 5)] = FMA(TP, TW, TT * TS);
	  }
	  {
	       E TG, TK, TD, TH;
	       TG = TE - TF;
	       TK = TI + TJ;
	       TD = W[0];
	       TH = W[1];
	       cr[WS(rs, 1)] = FNMS(TH, TK, TD * TG);
	       ci[WS(rs, 1)] = FMA(TD, TK, TH * TG);
	  }
     }
}

static const tw_instr twinstr[] = {
     {TW_FULL, 1, 7},
     {TW_NEXT, 1, 0}
};

static const hc2hc_desc desc = { 7, "hb_7", twinstr, &GENUS, {36, 24, 36, 0} };

void X(codelet_hb_7) (planner *p) {
     X(khc2hc_register) (p, hb_7, &desc);
}
#endif				/* HAVE_FMA */