view Lib/fftw-3.2.1/dft/scalar/codelets/n1_32.c @ 0:25bf17994ef1

First commit. VS2013, Codeblocks and Mac OSX configuration
author Geogaddi\David <d.m.ronan@qmul.ac.uk>
date Thu, 09 Jul 2015 01:12:16 +0100
parents
children
line wrap: on
line source
/*
 * Copyright (c) 2003, 2007-8 Matteo Frigo
 * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Mon Feb  9 19:50:54 EST 2009 */

#include "codelet-dft.h"

#ifdef HAVE_FMA

/* Generated by: ../../../genfft/gen_notw -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 32 -name n1_32 -include n.h */

/*
 * This function contains 372 FP additions, 136 FP multiplications,
 * (or, 236 additions, 0 multiplications, 136 fused multiply/add),
 * 136 stack variables, 7 constants, and 128 memory accesses
 */
#include "n.h"

static void n1_32(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
{
     DK(KP980785280, +0.980785280403230449126182236134239036973933731);
     DK(KP198912367, +0.198912367379658006911597622644676228597850501);
     DK(KP831469612, +0.831469612302545237078788377617905756738560812);
     DK(KP668178637, +0.668178637919298919997757686523080761552472251);
     DK(KP923879532, +0.923879532511286756128183189396788286822416626);
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
     DK(KP414213562, +0.414213562373095048801688724209698078569671875);
     INT i;
     for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(is), MAKE_VOLATILE_STRIDE(os)) {
	  E T3g, T3f, T3n, T3b, T3r, T3l, T3o, T3e, T3h, T3p;
	  {
	       E T2T, T3T, T4r, T7, T3t, T1z, T18, T4Z, Te, T50, T4s, T1f, T2W, T3u, T3U;
	       E T1G, Tm, T1n, T3X, T3y, T2Z, T1O, T53, T4w, Tt, T1u, T3W, T3B, T2Y, T1V;
	       E T52, T4z, T3O, T2t, T3L, T2K, T5F, TZ, T5I, T5X, T4R, T5k, T3M, T2E, T5j;
	       E T4W, T3P, T2N, T3H, T22, T3E, T2j, T4H, T4K, T5A, TK, T5D, T5W, T2k, T2l;
	       E T4G, T5h, T3F, T2d;
	       {
		    E Tj, T1L, Ti, T1I, T1j, Tk, T1k, T1l;
		    {
			 E T4, T1x, T3, T2R, T14, T5, T15, T16, T1C, T1F;
			 {
			      E T1, T2, T12, T13;
			      T1 = ri[0];
			      T2 = ri[WS(is, 16)];
			      T12 = ii[0];
			      T13 = ii[WS(is, 16)];
			      T4 = ri[WS(is, 8)];
			      T1x = T1 - T2;
			      T3 = T1 + T2;
			      T2R = T12 - T13;
			      T14 = T12 + T13;
			      T5 = ri[WS(is, 24)];
			      T15 = ii[WS(is, 8)];
			      T16 = ii[WS(is, 24)];
			 }
			 {
			      E Tb, T1A, Ta, T1B, T1b, Tc, T1c, T1d;
			      {
				   E T8, T9, T19, T1a;
				   T8 = ri[WS(is, 4)];
				   {
					E T2S, T6, T1y, T17;
					T2S = T4 - T5;
					T6 = T4 + T5;
					T1y = T15 - T16;
					T17 = T15 + T16;
					T2T = T2R - T2S;
					T3T = T2S + T2R;
					T4r = T3 - T6;
					T7 = T3 + T6;
					T3t = T1x - T1y;
					T1z = T1x + T1y;
					T18 = T14 + T17;
					T4Z = T14 - T17;
					T9 = ri[WS(is, 20)];
				   }
				   T19 = ii[WS(is, 4)];
				   T1a = ii[WS(is, 20)];
				   Tb = ri[WS(is, 28)];
				   T1A = T8 - T9;
				   Ta = T8 + T9;
				   T1B = T19 - T1a;
				   T1b = T19 + T1a;
				   Tc = ri[WS(is, 12)];
				   T1c = ii[WS(is, 28)];
				   T1d = ii[WS(is, 12)];
			      }
			      {
				   E T2U, T1D, Td, T1E, T1e, T2V;
				   T1C = T1A + T1B;
				   T2U = T1B - T1A;
				   T1D = Tb - Tc;
				   Td = Tb + Tc;
				   T1E = T1c - T1d;
				   T1e = T1c + T1d;
				   Te = Ta + Td;
				   T50 = Td - Ta;
				   T1F = T1D - T1E;
				   T2V = T1D + T1E;
				   T4s = T1b - T1e;
				   T1f = T1b + T1e;
				   T2W = T2U + T2V;
				   T3u = T2U - T2V;
			      }
			 }
			 {
			      E Tg, Th, T1h, T1i;
			      Tg = ri[WS(is, 2)];
			      T3U = T1F - T1C;
			      T1G = T1C + T1F;
			      Th = ri[WS(is, 18)];
			      T1h = ii[WS(is, 2)];
			      T1i = ii[WS(is, 18)];
			      Tj = ri[WS(is, 10)];
			      T1L = Tg - Th;
			      Ti = Tg + Th;
			      T1I = T1h - T1i;
			      T1j = T1h + T1i;
			      Tk = ri[WS(is, 26)];
			      T1k = ii[WS(is, 10)];
			      T1l = ii[WS(is, 26)];
			 }
		    }
		    {
			 E Tq, T1S, Tp, T1P, T1q, Tr, T1r, T1s;
			 {
			      E Tn, To, T1o, T1p, T1J, Tl;
			      Tn = ri[WS(is, 30)];
			      T1J = Tj - Tk;
			      Tl = Tj + Tk;
			      {
				   E T1M, T1m, T3w, T1K;
				   T1M = T1k - T1l;
				   T1m = T1k + T1l;
				   T3w = T1J + T1I;
				   T1K = T1I - T1J;
				   {
					E T4v, T3x, T1N, T4u;
					T4v = Ti - Tl;
					Tm = Ti + Tl;
					T3x = T1L - T1M;
					T1N = T1L + T1M;
					T4u = T1j - T1m;
					T1n = T1j + T1m;
					T3X = FNMS(KP414213562, T3w, T3x);
					T3y = FMA(KP414213562, T3x, T3w);
					T2Z = FMA(KP414213562, T1K, T1N);
					T1O = FNMS(KP414213562, T1N, T1K);
					T53 = T4v + T4u;
					T4w = T4u - T4v;
					To = ri[WS(is, 14)];
				   }
			      }
			      T1o = ii[WS(is, 30)];
			      T1p = ii[WS(is, 14)];
			      Tq = ri[WS(is, 6)];
			      T1S = Tn - To;
			      Tp = Tn + To;
			      T1P = T1o - T1p;
			      T1q = T1o + T1p;
			      Tr = ri[WS(is, 22)];
			      T1r = ii[WS(is, 6)];
			      T1s = ii[WS(is, 22)];
			 }
			 {
			      E T4S, T4V, T2L, T2M;
			      {
				   E T2G, TN, T4N, T2r, T2s, TQ, T4O, T2J, TV, T2x, TU, T4T, T2w, TW, T2A;
				   E T2B;
				   {
					E TO, TP, T2H, T2I;
					{
					     E TL, TM, T2p, T2q, T1Q, Ts;
					     TL = ri[WS(is, 31)];
					     T1Q = Tq - Tr;
					     Ts = Tq + Tr;
					     {
						  E T1T, T1t, T3z, T1R;
						  T1T = T1r - T1s;
						  T1t = T1r + T1s;
						  T3z = T1Q + T1P;
						  T1R = T1P - T1Q;
						  {
						       E T4x, T3A, T1U, T4y;
						       T4x = Tp - Ts;
						       Tt = Tp + Ts;
						       T3A = T1S - T1T;
						       T1U = T1S + T1T;
						       T4y = T1q - T1t;
						       T1u = T1q + T1t;
						       T3W = FMA(KP414213562, T3z, T3A);
						       T3B = FNMS(KP414213562, T3A, T3z);
						       T2Y = FNMS(KP414213562, T1R, T1U);
						       T1V = FMA(KP414213562, T1U, T1R);
						       T52 = T4x - T4y;
						       T4z = T4x + T4y;
						       TM = ri[WS(is, 15)];
						  }
					     }
					     T2p = ii[WS(is, 31)];
					     T2q = ii[WS(is, 15)];
					     TO = ri[WS(is, 7)];
					     T2G = TL - TM;
					     TN = TL + TM;
					     T4N = T2p + T2q;
					     T2r = T2p - T2q;
					     TP = ri[WS(is, 23)];
					     T2H = ii[WS(is, 7)];
					     T2I = ii[WS(is, 23)];
					}
					{
					     E TS, TT, T2u, T2v;
					     TS = ri[WS(is, 3)];
					     T2s = TO - TP;
					     TQ = TO + TP;
					     T4O = T2H + T2I;
					     T2J = T2H - T2I;
					     TT = ri[WS(is, 19)];
					     T2u = ii[WS(is, 3)];
					     T2v = ii[WS(is, 19)];
					     TV = ri[WS(is, 27)];
					     T2x = TS - TT;
					     TU = TS + TT;
					     T4T = T2u + T2v;
					     T2w = T2u - T2v;
					     TW = ri[WS(is, 11)];
					     T2A = ii[WS(is, 27)];
					     T2B = ii[WS(is, 11)];
					}
				   }
				   {
					E T2z, T4U, T2C, TR, TY, T4Q, TX;
					T3O = T2s + T2r;
					T2t = T2r - T2s;
					T2z = TV - TW;
					TX = TV + TW;
					T4U = T2A + T2B;
					T2C = T2A - T2B;
					T3L = T2G - T2J;
					T2K = T2G + T2J;
					T4S = TN - TQ;
					TR = TN + TQ;
					TY = TU + TX;
					T4Q = TX - TU;
					{
					     E T4P, T5G, T5H, T2y, T2D;
					     T4P = T4N - T4O;
					     T5G = T4N + T4O;
					     T5H = T4T + T4U;
					     T4V = T4T - T4U;
					     T5F = TR - TY;
					     TZ = TR + TY;
					     T5I = T5G - T5H;
					     T5X = T5G + T5H;
					     T2L = T2x + T2w;
					     T2y = T2w - T2x;
					     T2D = T2z + T2C;
					     T2M = T2z - T2C;
					     T4R = T4P - T4Q;
					     T5k = T4Q + T4P;
					     T3M = T2D - T2y;
					     T2E = T2y + T2D;
					}
				   }
			      }
			      {
				   E T2f, Ty, T4C, T20, T21, TB, T4D, T2i, TG, T26, TF, T4I, T25, TH, T29;
				   E T2a;
				   {
					E Tz, TA, T2g, T2h;
					{
					     E Tw, Tx, T1Y, T1Z;
					     Tw = ri[WS(is, 1)];
					     T5j = T4S + T4V;
					     T4W = T4S - T4V;
					     T3P = T2L - T2M;
					     T2N = T2L + T2M;
					     Tx = ri[WS(is, 17)];
					     T1Y = ii[WS(is, 1)];
					     T1Z = ii[WS(is, 17)];
					     Tz = ri[WS(is, 9)];
					     T2f = Tw - Tx;
					     Ty = Tw + Tx;
					     T4C = T1Y + T1Z;
					     T20 = T1Y - T1Z;
					     TA = ri[WS(is, 25)];
					     T2g = ii[WS(is, 9)];
					     T2h = ii[WS(is, 25)];
					}
					{
					     E TD, TE, T23, T24;
					     TD = ri[WS(is, 5)];
					     T21 = Tz - TA;
					     TB = Tz + TA;
					     T4D = T2g + T2h;
					     T2i = T2g - T2h;
					     TE = ri[WS(is, 21)];
					     T23 = ii[WS(is, 5)];
					     T24 = ii[WS(is, 21)];
					     TG = ri[WS(is, 29)];
					     T26 = TD - TE;
					     TF = TD + TE;
					     T4I = T23 + T24;
					     T25 = T23 - T24;
					     TH = ri[WS(is, 13)];
					     T29 = ii[WS(is, 29)];
					     T2a = ii[WS(is, 13)];
					}
				   }
				   {
					E T28, T4J, T2b, TC, TJ, T4F, TI;
					T3H = T21 + T20;
					T22 = T20 - T21;
					T28 = TG - TH;
					TI = TG + TH;
					T4J = T29 + T2a;
					T2b = T29 - T2a;
					T3E = T2f - T2i;
					T2j = T2f + T2i;
					T4H = Ty - TB;
					TC = Ty + TB;
					TJ = TF + TI;
					T4F = TI - TF;
					{
					     E T4E, T5B, T5C, T27, T2c;
					     T4E = T4C - T4D;
					     T5B = T4C + T4D;
					     T5C = T4I + T4J;
					     T4K = T4I - T4J;
					     T5A = TC - TJ;
					     TK = TC + TJ;
					     T5D = T5B - T5C;
					     T5W = T5B + T5C;
					     T2k = T26 + T25;
					     T27 = T25 - T26;
					     T2c = T28 + T2b;
					     T2l = T28 - T2b;
					     T4G = T4E - T4F;
					     T5h = T4F + T4E;
					     T3F = T2c - T27;
					     T2d = T27 + T2c;
					}
				   }
			      }
			 }
		    }
	       }
	       {
		    E T3I, T2m, Tv, T60, T11, T10, T5Z, T1w;
		    {
			 E T5f, T5w, T5q, T5m, T5v, T5p;
			 {
			      E T5d, T5g, T5o, T4B, T5a, T5n, T5e, T56, T4Y, T57, T55;
			      {
				   E T4X, T4M, T5b, T5c, T51, T54;
				   {
					E T4t, T4A, T58, T59, T4L;
					T5d = T4r + T4s;
					T4t = T4r - T4s;
					T5g = T4H + T4K;
					T4L = T4H - T4K;
					T3I = T2k - T2l;
					T2m = T2k + T2l;
					T4A = T4w - T4z;
					T5o = T4w + T4z;
					T4X = FNMS(KP414213562, T4W, T4R);
					T58 = FMA(KP414213562, T4R, T4W);
					T59 = FNMS(KP414213562, T4G, T4L);
					T4M = FMA(KP414213562, T4L, T4G);
					T5b = FNMS(KP707106781, T4A, T4t);
					T4B = FMA(KP707106781, T4A, T4t);
					T5c = T59 + T58;
					T5a = T58 - T59;
					T5n = T50 + T4Z;
					T51 = T4Z - T50;
					T54 = T52 - T53;
					T5e = T53 + T52;
				   }
				   ro[WS(os, 14)] = FNMS(KP923879532, T5c, T5b);
				   T56 = T4M + T4X;
				   T4Y = T4M - T4X;
				   T57 = FMA(KP707106781, T54, T51);
				   T55 = FNMS(KP707106781, T54, T51);
				   ro[WS(os, 30)] = FMA(KP923879532, T5c, T5b);
			      }
			      ro[WS(os, 6)] = FMA(KP923879532, T4Y, T4B);
			      ro[WS(os, 22)] = FNMS(KP923879532, T4Y, T4B);
			      io[WS(os, 6)] = FMA(KP923879532, T5a, T57);
			      io[WS(os, 22)] = FNMS(KP923879532, T5a, T57);
			      io[WS(os, 30)] = FMA(KP923879532, T56, T55);
			      io[WS(os, 14)] = FNMS(KP923879532, T56, T55);
			      {
				   E T5i, T5l, T5r, T5u, T5s, T5t;
				   T5i = FMA(KP414213562, T5h, T5g);
				   T5s = FNMS(KP414213562, T5g, T5h);
				   T5t = FMA(KP414213562, T5j, T5k);
				   T5l = FNMS(KP414213562, T5k, T5j);
				   T5r = FNMS(KP707106781, T5e, T5d);
				   T5f = FMA(KP707106781, T5e, T5d);
				   T5w = T5s + T5t;
				   T5u = T5s - T5t;
				   ro[WS(os, 26)] = FNMS(KP923879532, T5u, T5r);
				   T5q = T5l - T5i;
				   T5m = T5i + T5l;
				   T5v = FMA(KP707106781, T5o, T5n);
				   T5p = FNMS(KP707106781, T5o, T5n);
				   ro[WS(os, 10)] = FMA(KP923879532, T5u, T5r);
			      }
			 }
			 ro[WS(os, 2)] = FMA(KP923879532, T5m, T5f);
			 ro[WS(os, 18)] = FNMS(KP923879532, T5m, T5f);
			 io[WS(os, 2)] = FMA(KP923879532, T5w, T5v);
			 io[WS(os, 18)] = FNMS(KP923879532, T5w, T5v);
			 io[WS(os, 10)] = FMA(KP923879532, T5q, T5p);
			 io[WS(os, 26)] = FNMS(KP923879532, T5q, T5p);
			 {
			      E Tf, T1v, T5z, T5U, T1g, Tu, T5O, T5K, T5T, T5N, T5V, T5Y;
			      {
				   E T5E, T5J, T5P, T5S, T5L, T5M;
				   {
					E T5x, T5y, T5Q, T5R;
					Tf = T7 + Te;
					T5x = T7 - Te;
					T5y = T1n - T1u;
					T1v = T1n + T1u;
					T5E = T5A + T5D;
					T5Q = T5D - T5A;
					T5R = T5F + T5I;
					T5J = T5F - T5I;
					T5P = T5x - T5y;
					T5z = T5x + T5y;
					T5U = T5Q + T5R;
					T5S = T5Q - T5R;
					T1g = T18 + T1f;
					T5L = T18 - T1f;
					T5M = Tt - Tm;
					Tu = Tm + Tt;
				   }
				   ro[WS(os, 28)] = FNMS(KP707106781, T5S, T5P);
				   T5O = T5J - T5E;
				   T5K = T5E + T5J;
				   T5T = T5M + T5L;
				   T5N = T5L - T5M;
				   ro[WS(os, 12)] = FMA(KP707106781, T5S, T5P);
			      }
			      ro[WS(os, 4)] = FMA(KP707106781, T5K, T5z);
			      ro[WS(os, 20)] = FNMS(KP707106781, T5K, T5z);
			      io[WS(os, 4)] = FMA(KP707106781, T5U, T5T);
			      io[WS(os, 20)] = FNMS(KP707106781, T5U, T5T);
			      io[WS(os, 12)] = FMA(KP707106781, T5O, T5N);
			      io[WS(os, 28)] = FNMS(KP707106781, T5O, T5N);
			      T5V = Tf - Tu;
			      Tv = Tf + Tu;
			      T60 = T5W + T5X;
			      T5Y = T5W - T5X;
			      ro[WS(os, 8)] = T5V + T5Y;
			      T11 = TZ - TK;
			      T10 = TK + TZ;
			      T5Z = T1g + T1v;
			      T1w = T1g - T1v;
			      ro[WS(os, 24)] = T5V - T5Y;
			 }
		    }
		    ro[0] = Tv + T10;
		    ro[WS(os, 16)] = Tv - T10;
		    io[0] = T5Z + T60;
		    io[WS(os, 16)] = T5Z - T60;
		    io[WS(os, 24)] = T1w - T11;
		    io[WS(os, 8)] = T11 + T1w;
		    {
			 E T39, T3k, T3j, T3a, T3d, T3c, T47, T4i, T4h, T41, T3D, T48, T4b, T4a, T4e;
			 E T3N, T45, T3Z, T42, T3K, T3Q, T4d;
			 {
			      E T2e, T37, T1X, T33, T31, T2n, T2F, T2O;
			      {
				   E T1H, T1W, T2X, T30;
				   T39 = FMA(KP707106781, T1G, T1z);
				   T1H = FNMS(KP707106781, T1G, T1z);
				   T1W = T1O - T1V;
				   T3k = T1O + T1V;
				   T3j = FMA(KP707106781, T2W, T2T);
				   T2X = FNMS(KP707106781, T2W, T2T);
				   T30 = T2Y - T2Z;
				   T3a = T2Z + T2Y;
				   T3d = FMA(KP707106781, T2d, T22);
				   T2e = FNMS(KP707106781, T2d, T22);
				   T37 = FNMS(KP923879532, T1W, T1H);
				   T1X = FMA(KP923879532, T1W, T1H);
				   T33 = FMA(KP923879532, T30, T2X);
				   T31 = FNMS(KP923879532, T30, T2X);
				   T2n = FNMS(KP707106781, T2m, T2j);
				   T3c = FMA(KP707106781, T2m, T2j);
				   T3g = FMA(KP707106781, T2E, T2t);
				   T2F = FNMS(KP707106781, T2E, T2t);
				   T2O = FNMS(KP707106781, T2N, T2K);
				   T3f = FMA(KP707106781, T2N, T2K);
			      }
			      {
				   E T3V, T3Y, T3G, T3J;
				   {
					E T3v, T35, T2o, T34, T2P, T3C;
					T47 = FNMS(KP707106781, T3u, T3t);
					T3v = FMA(KP707106781, T3u, T3t);
					T35 = FNMS(KP668178637, T2e, T2n);
					T2o = FMA(KP668178637, T2n, T2e);
					T34 = FMA(KP668178637, T2F, T2O);
					T2P = FNMS(KP668178637, T2O, T2F);
					T3C = T3y - T3B;
					T4i = T3y + T3B;
					T4h = FNMS(KP707106781, T3U, T3T);
					T3V = FMA(KP707106781, T3U, T3T);
					{
					     E T38, T36, T32, T2Q;
					     T38 = T35 + T34;
					     T36 = T34 - T35;
					     T32 = T2o + T2P;
					     T2Q = T2o - T2P;
					     T41 = FNMS(KP923879532, T3C, T3v);
					     T3D = FMA(KP923879532, T3C, T3v);
					     ro[WS(os, 29)] = FMA(KP831469612, T38, T37);
					     ro[WS(os, 13)] = FNMS(KP831469612, T38, T37);
					     io[WS(os, 5)] = FMA(KP831469612, T36, T33);
					     io[WS(os, 21)] = FNMS(KP831469612, T36, T33);
					     io[WS(os, 29)] = FMA(KP831469612, T32, T31);
					     io[WS(os, 13)] = FNMS(KP831469612, T32, T31);
					     ro[WS(os, 5)] = FMA(KP831469612, T2Q, T1X);
					     ro[WS(os, 21)] = FNMS(KP831469612, T2Q, T1X);
					     T3Y = T3W - T3X;
					     T48 = T3X + T3W;
					}
				   }
				   T4b = FMA(KP707106781, T3F, T3E);
				   T3G = FNMS(KP707106781, T3F, T3E);
				   T3J = FNMS(KP707106781, T3I, T3H);
				   T4a = FMA(KP707106781, T3I, T3H);
				   T4e = FMA(KP707106781, T3M, T3L);
				   T3N = FNMS(KP707106781, T3M, T3L);
				   T45 = FMA(KP923879532, T3Y, T3V);
				   T3Z = FNMS(KP923879532, T3Y, T3V);
				   T42 = FNMS(KP668178637, T3G, T3J);
				   T3K = FMA(KP668178637, T3J, T3G);
				   T3Q = FNMS(KP707106781, T3P, T3O);
				   T4d = FMA(KP707106781, T3P, T3O);
			      }
			 }
			 {
			      E T4p, T49, T4l, T4j, T4n, T4c, T43, T3R, T4m, T4f;
			      T43 = FMA(KP668178637, T3N, T3Q);
			      T3R = FNMS(KP668178637, T3Q, T3N);
			      T4p = FMA(KP923879532, T48, T47);
			      T49 = FNMS(KP923879532, T48, T47);
			      {
				   E T44, T46, T40, T3S;
				   T44 = T42 - T43;
				   T46 = T42 + T43;
				   T40 = T3R - T3K;
				   T3S = T3K + T3R;
				   ro[WS(os, 11)] = FMA(KP831469612, T44, T41);
				   ro[WS(os, 27)] = FNMS(KP831469612, T44, T41);
				   io[WS(os, 3)] = FMA(KP831469612, T46, T45);
				   io[WS(os, 19)] = FNMS(KP831469612, T46, T45);
				   io[WS(os, 11)] = FMA(KP831469612, T40, T3Z);
				   io[WS(os, 27)] = FNMS(KP831469612, T40, T3Z);
				   ro[WS(os, 3)] = FMA(KP831469612, T3S, T3D);
				   ro[WS(os, 19)] = FNMS(KP831469612, T3S, T3D);
			      }
			      T4l = FNMS(KP923879532, T4i, T4h);
			      T4j = FMA(KP923879532, T4i, T4h);
			      T4n = FNMS(KP198912367, T4a, T4b);
			      T4c = FMA(KP198912367, T4b, T4a);
			      T4m = FMA(KP198912367, T4d, T4e);
			      T4f = FNMS(KP198912367, T4e, T4d);
			      T3n = FNMS(KP923879532, T3a, T39);
			      T3b = FMA(KP923879532, T3a, T39);
			      {
				   E T4q, T4o, T4k, T4g;
				   T4q = T4n + T4m;
				   T4o = T4m - T4n;
				   T4k = T4c + T4f;
				   T4g = T4c - T4f;
				   ro[WS(os, 31)] = FMA(KP980785280, T4q, T4p);
				   ro[WS(os, 15)] = FNMS(KP980785280, T4q, T4p);
				   io[WS(os, 7)] = FMA(KP980785280, T4o, T4l);
				   io[WS(os, 23)] = FNMS(KP980785280, T4o, T4l);
				   io[WS(os, 31)] = FMA(KP980785280, T4k, T4j);
				   io[WS(os, 15)] = FNMS(KP980785280, T4k, T4j);
				   ro[WS(os, 7)] = FMA(KP980785280, T4g, T49);
				   ro[WS(os, 23)] = FNMS(KP980785280, T4g, T49);
			      }
			      T3r = FMA(KP923879532, T3k, T3j);
			      T3l = FNMS(KP923879532, T3k, T3j);
			      T3o = FNMS(KP198912367, T3c, T3d);
			      T3e = FMA(KP198912367, T3d, T3c);
			 }
		    }
	       }
	  }
	  T3h = FNMS(KP198912367, T3g, T3f);
	  T3p = FMA(KP198912367, T3f, T3g);
	  {
	       E T3s, T3q, T3i, T3m;
	       T3s = T3o + T3p;
	       T3q = T3o - T3p;
	       T3i = T3e + T3h;
	       T3m = T3h - T3e;
	       ro[WS(os, 9)] = FMA(KP980785280, T3q, T3n);
	       ro[WS(os, 25)] = FNMS(KP980785280, T3q, T3n);
	       io[WS(os, 1)] = FMA(KP980785280, T3s, T3r);
	       io[WS(os, 17)] = FNMS(KP980785280, T3s, T3r);
	       io[WS(os, 9)] = FMA(KP980785280, T3m, T3l);
	       io[WS(os, 25)] = FNMS(KP980785280, T3m, T3l);
	       ro[WS(os, 1)] = FMA(KP980785280, T3i, T3b);
	       ro[WS(os, 17)] = FNMS(KP980785280, T3i, T3b);
	  }
     }
}

static const kdft_desc desc = { 32, "n1_32", {236, 0, 136, 0}, &GENUS, 0, 0, 0, 0 };
void X(codelet_n1_32) (planner *p) {
     X(kdft_register) (p, n1_32, &desc);
}

#else				/* HAVE_FMA */

/* Generated by: ../../../genfft/gen_notw -compact -variables 4 -pipeline-latency 4 -n 32 -name n1_32 -include n.h */

/*
 * This function contains 372 FP additions, 84 FP multiplications,
 * (or, 340 additions, 52 multiplications, 32 fused multiply/add),
 * 100 stack variables, 7 constants, and 128 memory accesses
 */
#include "n.h"

static void n1_32(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
{
     DK(KP831469612, +0.831469612302545237078788377617905756738560812);
     DK(KP555570233, +0.555570233019602224742830813948532874374937191);
     DK(KP195090322, +0.195090322016128267848284868477022240927691618);
     DK(KP980785280, +0.980785280403230449126182236134239036973933731);
     DK(KP923879532, +0.923879532511286756128183189396788286822416626);
     DK(KP382683432, +0.382683432365089771728459984030398866761344562);
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
     INT i;
     for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(is), MAKE_VOLATILE_STRIDE(os)) {
	  E T7, T4r, T4Z, T18, T1z, T3t, T3T, T2T, Te, T1f, T50, T4s, T2W, T3u, T1G;
	  E T3U, Tm, T1n, T1O, T2Z, T3y, T3X, T4w, T53, Tt, T1u, T1V, T2Y, T3B, T3W;
	  E T4z, T52, T2t, T3L, T3O, T2K, TR, TY, T5F, T5G, T5H, T5I, T4R, T5j, T2E;
	  E T3P, T4W, T5k, T2N, T3M, T22, T3E, T3H, T2j, TC, TJ, T5A, T5B, T5C, T5D;
	  E T4G, T5g, T2d, T3F, T4L, T5h, T2m, T3I;
	  {
	       E T3, T1x, T14, T2S, T6, T2R, T17, T1y;
	       {
		    E T1, T2, T12, T13;
		    T1 = ri[0];
		    T2 = ri[WS(is, 16)];
		    T3 = T1 + T2;
		    T1x = T1 - T2;
		    T12 = ii[0];
		    T13 = ii[WS(is, 16)];
		    T14 = T12 + T13;
		    T2S = T12 - T13;
	       }
	       {
		    E T4, T5, T15, T16;
		    T4 = ri[WS(is, 8)];
		    T5 = ri[WS(is, 24)];
		    T6 = T4 + T5;
		    T2R = T4 - T5;
		    T15 = ii[WS(is, 8)];
		    T16 = ii[WS(is, 24)];
		    T17 = T15 + T16;
		    T1y = T15 - T16;
	       }
	       T7 = T3 + T6;
	       T4r = T3 - T6;
	       T4Z = T14 - T17;
	       T18 = T14 + T17;
	       T1z = T1x - T1y;
	       T3t = T1x + T1y;
	       T3T = T2S - T2R;
	       T2T = T2R + T2S;
	  }
	  {
	       E Ta, T1B, T1b, T1A, Td, T1D, T1e, T1E;
	       {
		    E T8, T9, T19, T1a;
		    T8 = ri[WS(is, 4)];
		    T9 = ri[WS(is, 20)];
		    Ta = T8 + T9;
		    T1B = T8 - T9;
		    T19 = ii[WS(is, 4)];
		    T1a = ii[WS(is, 20)];
		    T1b = T19 + T1a;
		    T1A = T19 - T1a;
	       }
	       {
		    E Tb, Tc, T1c, T1d;
		    Tb = ri[WS(is, 28)];
		    Tc = ri[WS(is, 12)];
		    Td = Tb + Tc;
		    T1D = Tb - Tc;
		    T1c = ii[WS(is, 28)];
		    T1d = ii[WS(is, 12)];
		    T1e = T1c + T1d;
		    T1E = T1c - T1d;
	       }
	       Te = Ta + Td;
	       T1f = T1b + T1e;
	       T50 = Td - Ta;
	       T4s = T1b - T1e;
	       {
		    E T2U, T2V, T1C, T1F;
		    T2U = T1D - T1E;
		    T2V = T1B + T1A;
		    T2W = KP707106781 * (T2U - T2V);
		    T3u = KP707106781 * (T2V + T2U);
		    T1C = T1A - T1B;
		    T1F = T1D + T1E;
		    T1G = KP707106781 * (T1C - T1F);
		    T3U = KP707106781 * (T1C + T1F);
	       }
	  }
	  {
	       E Ti, T1L, T1j, T1J, Tl, T1I, T1m, T1M, T1K, T1N;
	       {
		    E Tg, Th, T1h, T1i;
		    Tg = ri[WS(is, 2)];
		    Th = ri[WS(is, 18)];
		    Ti = Tg + Th;
		    T1L = Tg - Th;
		    T1h = ii[WS(is, 2)];
		    T1i = ii[WS(is, 18)];
		    T1j = T1h + T1i;
		    T1J = T1h - T1i;
	       }
	       {
		    E Tj, Tk, T1k, T1l;
		    Tj = ri[WS(is, 10)];
		    Tk = ri[WS(is, 26)];
		    Tl = Tj + Tk;
		    T1I = Tj - Tk;
		    T1k = ii[WS(is, 10)];
		    T1l = ii[WS(is, 26)];
		    T1m = T1k + T1l;
		    T1M = T1k - T1l;
	       }
	       Tm = Ti + Tl;
	       T1n = T1j + T1m;
	       T1K = T1I + T1J;
	       T1N = T1L - T1M;
	       T1O = FNMS(KP923879532, T1N, KP382683432 * T1K);
	       T2Z = FMA(KP923879532, T1K, KP382683432 * T1N);
	       {
		    E T3w, T3x, T4u, T4v;
		    T3w = T1J - T1I;
		    T3x = T1L + T1M;
		    T3y = FNMS(KP382683432, T3x, KP923879532 * T3w);
		    T3X = FMA(KP382683432, T3w, KP923879532 * T3x);
		    T4u = T1j - T1m;
		    T4v = Ti - Tl;
		    T4w = T4u - T4v;
		    T53 = T4v + T4u;
	       }
	  }
	  {
	       E Tp, T1S, T1q, T1Q, Ts, T1P, T1t, T1T, T1R, T1U;
	       {
		    E Tn, To, T1o, T1p;
		    Tn = ri[WS(is, 30)];
		    To = ri[WS(is, 14)];
		    Tp = Tn + To;
		    T1S = Tn - To;
		    T1o = ii[WS(is, 30)];
		    T1p = ii[WS(is, 14)];
		    T1q = T1o + T1p;
		    T1Q = T1o - T1p;
	       }
	       {
		    E Tq, Tr, T1r, T1s;
		    Tq = ri[WS(is, 6)];
		    Tr = ri[WS(is, 22)];
		    Ts = Tq + Tr;
		    T1P = Tq - Tr;
		    T1r = ii[WS(is, 6)];
		    T1s = ii[WS(is, 22)];
		    T1t = T1r + T1s;
		    T1T = T1r - T1s;
	       }
	       Tt = Tp + Ts;
	       T1u = T1q + T1t;
	       T1R = T1P + T1Q;
	       T1U = T1S - T1T;
	       T1V = FMA(KP382683432, T1R, KP923879532 * T1U);
	       T2Y = FNMS(KP923879532, T1R, KP382683432 * T1U);
	       {
		    E T3z, T3A, T4x, T4y;
		    T3z = T1Q - T1P;
		    T3A = T1S + T1T;
		    T3B = FMA(KP923879532, T3z, KP382683432 * T3A);
		    T3W = FNMS(KP382683432, T3z, KP923879532 * T3A);
		    T4x = Tp - Ts;
		    T4y = T1q - T1t;
		    T4z = T4x + T4y;
		    T52 = T4x - T4y;
	       }
	  }
	  {
	       E TN, T2p, T2J, T4S, TQ, T2G, T2s, T4T, TU, T2x, T2w, T4O, TX, T2z, T2C;
	       E T4P;
	       {
		    E TL, TM, T2H, T2I;
		    TL = ri[WS(is, 31)];
		    TM = ri[WS(is, 15)];
		    TN = TL + TM;
		    T2p = TL - TM;
		    T2H = ii[WS(is, 31)];
		    T2I = ii[WS(is, 15)];
		    T2J = T2H - T2I;
		    T4S = T2H + T2I;
	       }
	       {
		    E TO, TP, T2q, T2r;
		    TO = ri[WS(is, 7)];
		    TP = ri[WS(is, 23)];
		    TQ = TO + TP;
		    T2G = TO - TP;
		    T2q = ii[WS(is, 7)];
		    T2r = ii[WS(is, 23)];
		    T2s = T2q - T2r;
		    T4T = T2q + T2r;
	       }
	       {
		    E TS, TT, T2u, T2v;
		    TS = ri[WS(is, 3)];
		    TT = ri[WS(is, 19)];
		    TU = TS + TT;
		    T2x = TS - TT;
		    T2u = ii[WS(is, 3)];
		    T2v = ii[WS(is, 19)];
		    T2w = T2u - T2v;
		    T4O = T2u + T2v;
	       }
	       {
		    E TV, TW, T2A, T2B;
		    TV = ri[WS(is, 27)];
		    TW = ri[WS(is, 11)];
		    TX = TV + TW;
		    T2z = TV - TW;
		    T2A = ii[WS(is, 27)];
		    T2B = ii[WS(is, 11)];
		    T2C = T2A - T2B;
		    T4P = T2A + T2B;
	       }
	       T2t = T2p - T2s;
	       T3L = T2p + T2s;
	       T3O = T2J - T2G;
	       T2K = T2G + T2J;
	       TR = TN + TQ;
	       TY = TU + TX;
	       T5F = TR - TY;
	       {
		    E T4N, T4Q, T2y, T2D;
		    T5G = T4S + T4T;
		    T5H = T4O + T4P;
		    T5I = T5G - T5H;
		    T4N = TN - TQ;
		    T4Q = T4O - T4P;
		    T4R = T4N - T4Q;
		    T5j = T4N + T4Q;
		    T2y = T2w - T2x;
		    T2D = T2z + T2C;
		    T2E = KP707106781 * (T2y - T2D);
		    T3P = KP707106781 * (T2y + T2D);
		    {
			 E T4U, T4V, T2L, T2M;
			 T4U = T4S - T4T;
			 T4V = TX - TU;
			 T4W = T4U - T4V;
			 T5k = T4V + T4U;
			 T2L = T2z - T2C;
			 T2M = T2x + T2w;
			 T2N = KP707106781 * (T2L - T2M);
			 T3M = KP707106781 * (T2M + T2L);
		    }
	       }
	  }
	  {
	       E Ty, T2f, T21, T4C, TB, T1Y, T2i, T4D, TF, T28, T2b, T4I, TI, T23, T26;
	       E T4J;
	       {
		    E Tw, Tx, T1Z, T20;
		    Tw = ri[WS(is, 1)];
		    Tx = ri[WS(is, 17)];
		    Ty = Tw + Tx;
		    T2f = Tw - Tx;
		    T1Z = ii[WS(is, 1)];
		    T20 = ii[WS(is, 17)];
		    T21 = T1Z - T20;
		    T4C = T1Z + T20;
	       }
	       {
		    E Tz, TA, T2g, T2h;
		    Tz = ri[WS(is, 9)];
		    TA = ri[WS(is, 25)];
		    TB = Tz + TA;
		    T1Y = Tz - TA;
		    T2g = ii[WS(is, 9)];
		    T2h = ii[WS(is, 25)];
		    T2i = T2g - T2h;
		    T4D = T2g + T2h;
	       }
	       {
		    E TD, TE, T29, T2a;
		    TD = ri[WS(is, 5)];
		    TE = ri[WS(is, 21)];
		    TF = TD + TE;
		    T28 = TD - TE;
		    T29 = ii[WS(is, 5)];
		    T2a = ii[WS(is, 21)];
		    T2b = T29 - T2a;
		    T4I = T29 + T2a;
	       }
	       {
		    E TG, TH, T24, T25;
		    TG = ri[WS(is, 29)];
		    TH = ri[WS(is, 13)];
		    TI = TG + TH;
		    T23 = TG - TH;
		    T24 = ii[WS(is, 29)];
		    T25 = ii[WS(is, 13)];
		    T26 = T24 - T25;
		    T4J = T24 + T25;
	       }
	       T22 = T1Y + T21;
	       T3E = T2f + T2i;
	       T3H = T21 - T1Y;
	       T2j = T2f - T2i;
	       TC = Ty + TB;
	       TJ = TF + TI;
	       T5A = TC - TJ;
	       {
		    E T4E, T4F, T27, T2c;
		    T5B = T4C + T4D;
		    T5C = T4I + T4J;
		    T5D = T5B - T5C;
		    T4E = T4C - T4D;
		    T4F = TI - TF;
		    T4G = T4E - T4F;
		    T5g = T4F + T4E;
		    T27 = T23 - T26;
		    T2c = T28 + T2b;
		    T2d = KP707106781 * (T27 - T2c);
		    T3F = KP707106781 * (T2c + T27);
		    {
			 E T4H, T4K, T2k, T2l;
			 T4H = Ty - TB;
			 T4K = T4I - T4J;
			 T4L = T4H - T4K;
			 T5h = T4H + T4K;
			 T2k = T2b - T28;
			 T2l = T23 + T26;
			 T2m = KP707106781 * (T2k - T2l);
			 T3I = KP707106781 * (T2k + T2l);
		    }
	       }
	  }
	  {
	       E T4B, T57, T5a, T5c, T4Y, T56, T55, T5b;
	       {
		    E T4t, T4A, T58, T59;
		    T4t = T4r - T4s;
		    T4A = KP707106781 * (T4w - T4z);
		    T4B = T4t + T4A;
		    T57 = T4t - T4A;
		    T58 = FNMS(KP923879532, T4L, KP382683432 * T4G);
		    T59 = FMA(KP382683432, T4W, KP923879532 * T4R);
		    T5a = T58 - T59;
		    T5c = T58 + T59;
	       }
	       {
		    E T4M, T4X, T51, T54;
		    T4M = FMA(KP923879532, T4G, KP382683432 * T4L);
		    T4X = FNMS(KP923879532, T4W, KP382683432 * T4R);
		    T4Y = T4M + T4X;
		    T56 = T4X - T4M;
		    T51 = T4Z - T50;
		    T54 = KP707106781 * (T52 - T53);
		    T55 = T51 - T54;
		    T5b = T51 + T54;
	       }
	       ro[WS(os, 22)] = T4B - T4Y;
	       io[WS(os, 22)] = T5b - T5c;
	       ro[WS(os, 6)] = T4B + T4Y;
	       io[WS(os, 6)] = T5b + T5c;
	       io[WS(os, 30)] = T55 - T56;
	       ro[WS(os, 30)] = T57 - T5a;
	       io[WS(os, 14)] = T55 + T56;
	       ro[WS(os, 14)] = T57 + T5a;
	  }
	  {
	       E T5f, T5r, T5u, T5w, T5m, T5q, T5p, T5v;
	       {
		    E T5d, T5e, T5s, T5t;
		    T5d = T4r + T4s;
		    T5e = KP707106781 * (T53 + T52);
		    T5f = T5d + T5e;
		    T5r = T5d - T5e;
		    T5s = FNMS(KP382683432, T5h, KP923879532 * T5g);
		    T5t = FMA(KP923879532, T5k, KP382683432 * T5j);
		    T5u = T5s - T5t;
		    T5w = T5s + T5t;
	       }
	       {
		    E T5i, T5l, T5n, T5o;
		    T5i = FMA(KP382683432, T5g, KP923879532 * T5h);
		    T5l = FNMS(KP382683432, T5k, KP923879532 * T5j);
		    T5m = T5i + T5l;
		    T5q = T5l - T5i;
		    T5n = T50 + T4Z;
		    T5o = KP707106781 * (T4w + T4z);
		    T5p = T5n - T5o;
		    T5v = T5n + T5o;
	       }
	       ro[WS(os, 18)] = T5f - T5m;
	       io[WS(os, 18)] = T5v - T5w;
	       ro[WS(os, 2)] = T5f + T5m;
	       io[WS(os, 2)] = T5v + T5w;
	       io[WS(os, 26)] = T5p - T5q;
	       ro[WS(os, 26)] = T5r - T5u;
	       io[WS(os, 10)] = T5p + T5q;
	       ro[WS(os, 10)] = T5r + T5u;
	  }
	  {
	       E T5z, T5P, T5S, T5U, T5K, T5O, T5N, T5T;
	       {
		    E T5x, T5y, T5Q, T5R;
		    T5x = T7 - Te;
		    T5y = T1n - T1u;
		    T5z = T5x + T5y;
		    T5P = T5x - T5y;
		    T5Q = T5D - T5A;
		    T5R = T5F + T5I;
		    T5S = KP707106781 * (T5Q - T5R);
		    T5U = KP707106781 * (T5Q + T5R);
	       }
	       {
		    E T5E, T5J, T5L, T5M;
		    T5E = T5A + T5D;
		    T5J = T5F - T5I;
		    T5K = KP707106781 * (T5E + T5J);
		    T5O = KP707106781 * (T5J - T5E);
		    T5L = T18 - T1f;
		    T5M = Tt - Tm;
		    T5N = T5L - T5M;
		    T5T = T5M + T5L;
	       }
	       ro[WS(os, 20)] = T5z - T5K;
	       io[WS(os, 20)] = T5T - T5U;
	       ro[WS(os, 4)] = T5z + T5K;
	       io[WS(os, 4)] = T5T + T5U;
	       io[WS(os, 28)] = T5N - T5O;
	       ro[WS(os, 28)] = T5P - T5S;
	       io[WS(os, 12)] = T5N + T5O;
	       ro[WS(os, 12)] = T5P + T5S;
	  }
	  {
	       E Tv, T5V, T5Y, T60, T10, T11, T1w, T5Z;
	       {
		    E Tf, Tu, T5W, T5X;
		    Tf = T7 + Te;
		    Tu = Tm + Tt;
		    Tv = Tf + Tu;
		    T5V = Tf - Tu;
		    T5W = T5B + T5C;
		    T5X = T5G + T5H;
		    T5Y = T5W - T5X;
		    T60 = T5W + T5X;
	       }
	       {
		    E TK, TZ, T1g, T1v;
		    TK = TC + TJ;
		    TZ = TR + TY;
		    T10 = TK + TZ;
		    T11 = TZ - TK;
		    T1g = T18 + T1f;
		    T1v = T1n + T1u;
		    T1w = T1g - T1v;
		    T5Z = T1g + T1v;
	       }
	       ro[WS(os, 16)] = Tv - T10;
	       io[WS(os, 16)] = T5Z - T60;
	       ro[0] = Tv + T10;
	       io[0] = T5Z + T60;
	       io[WS(os, 8)] = T11 + T1w;
	       ro[WS(os, 8)] = T5V + T5Y;
	       io[WS(os, 24)] = T1w - T11;
	       ro[WS(os, 24)] = T5V - T5Y;
	  }
	  {
	       E T1X, T33, T31, T37, T2o, T34, T2P, T35;
	       {
		    E T1H, T1W, T2X, T30;
		    T1H = T1z - T1G;
		    T1W = T1O - T1V;
		    T1X = T1H + T1W;
		    T33 = T1H - T1W;
		    T2X = T2T - T2W;
		    T30 = T2Y - T2Z;
		    T31 = T2X - T30;
		    T37 = T2X + T30;
	       }
	       {
		    E T2e, T2n, T2F, T2O;
		    T2e = T22 - T2d;
		    T2n = T2j - T2m;
		    T2o = FMA(KP980785280, T2e, KP195090322 * T2n);
		    T34 = FNMS(KP980785280, T2n, KP195090322 * T2e);
		    T2F = T2t - T2E;
		    T2O = T2K - T2N;
		    T2P = FNMS(KP980785280, T2O, KP195090322 * T2F);
		    T35 = FMA(KP195090322, T2O, KP980785280 * T2F);
	       }
	       {
		    E T2Q, T38, T32, T36;
		    T2Q = T2o + T2P;
		    ro[WS(os, 23)] = T1X - T2Q;
		    ro[WS(os, 7)] = T1X + T2Q;
		    T38 = T34 + T35;
		    io[WS(os, 23)] = T37 - T38;
		    io[WS(os, 7)] = T37 + T38;
		    T32 = T2P - T2o;
		    io[WS(os, 31)] = T31 - T32;
		    io[WS(os, 15)] = T31 + T32;
		    T36 = T34 - T35;
		    ro[WS(os, 31)] = T33 - T36;
		    ro[WS(os, 15)] = T33 + T36;
	       }
	  }
	  {
	       E T3D, T41, T3Z, T45, T3K, T42, T3R, T43;
	       {
		    E T3v, T3C, T3V, T3Y;
		    T3v = T3t - T3u;
		    T3C = T3y - T3B;
		    T3D = T3v + T3C;
		    T41 = T3v - T3C;
		    T3V = T3T - T3U;
		    T3Y = T3W - T3X;
		    T3Z = T3V - T3Y;
		    T45 = T3V + T3Y;
	       }
	       {
		    E T3G, T3J, T3N, T3Q;
		    T3G = T3E - T3F;
		    T3J = T3H - T3I;
		    T3K = FMA(KP555570233, T3G, KP831469612 * T3J);
		    T42 = FNMS(KP831469612, T3G, KP555570233 * T3J);
		    T3N = T3L - T3M;
		    T3Q = T3O - T3P;
		    T3R = FNMS(KP831469612, T3Q, KP555570233 * T3N);
		    T43 = FMA(KP831469612, T3N, KP555570233 * T3Q);
	       }
	       {
		    E T3S, T46, T40, T44;
		    T3S = T3K + T3R;
		    ro[WS(os, 21)] = T3D - T3S;
		    ro[WS(os, 5)] = T3D + T3S;
		    T46 = T42 + T43;
		    io[WS(os, 21)] = T45 - T46;
		    io[WS(os, 5)] = T45 + T46;
		    T40 = T3R - T3K;
		    io[WS(os, 29)] = T3Z - T40;
		    io[WS(os, 13)] = T3Z + T40;
		    T44 = T42 - T43;
		    ro[WS(os, 29)] = T41 - T44;
		    ro[WS(os, 13)] = T41 + T44;
	       }
	  }
	  {
	       E T49, T4l, T4j, T4p, T4c, T4m, T4f, T4n;
	       {
		    E T47, T48, T4h, T4i;
		    T47 = T3t + T3u;
		    T48 = T3X + T3W;
		    T49 = T47 + T48;
		    T4l = T47 - T48;
		    T4h = T3T + T3U;
		    T4i = T3y + T3B;
		    T4j = T4h - T4i;
		    T4p = T4h + T4i;
	       }
	       {
		    E T4a, T4b, T4d, T4e;
		    T4a = T3E + T3F;
		    T4b = T3H + T3I;
		    T4c = FMA(KP980785280, T4a, KP195090322 * T4b);
		    T4m = FNMS(KP195090322, T4a, KP980785280 * T4b);
		    T4d = T3L + T3M;
		    T4e = T3O + T3P;
		    T4f = FNMS(KP195090322, T4e, KP980785280 * T4d);
		    T4n = FMA(KP195090322, T4d, KP980785280 * T4e);
	       }
	       {
		    E T4g, T4q, T4k, T4o;
		    T4g = T4c + T4f;
		    ro[WS(os, 17)] = T49 - T4g;
		    ro[WS(os, 1)] = T49 + T4g;
		    T4q = T4m + T4n;
		    io[WS(os, 17)] = T4p - T4q;
		    io[WS(os, 1)] = T4p + T4q;
		    T4k = T4f - T4c;
		    io[WS(os, 25)] = T4j - T4k;
		    io[WS(os, 9)] = T4j + T4k;
		    T4o = T4m - T4n;
		    ro[WS(os, 25)] = T4l - T4o;
		    ro[WS(os, 9)] = T4l + T4o;
	       }
	  }
	  {
	       E T3b, T3n, T3l, T3r, T3e, T3o, T3h, T3p;
	       {
		    E T39, T3a, T3j, T3k;
		    T39 = T1z + T1G;
		    T3a = T2Z + T2Y;
		    T3b = T39 + T3a;
		    T3n = T39 - T3a;
		    T3j = T2T + T2W;
		    T3k = T1O + T1V;
		    T3l = T3j - T3k;
		    T3r = T3j + T3k;
	       }
	       {
		    E T3c, T3d, T3f, T3g;
		    T3c = T22 + T2d;
		    T3d = T2j + T2m;
		    T3e = FMA(KP555570233, T3c, KP831469612 * T3d);
		    T3o = FNMS(KP555570233, T3d, KP831469612 * T3c);
		    T3f = T2t + T2E;
		    T3g = T2K + T2N;
		    T3h = FNMS(KP555570233, T3g, KP831469612 * T3f);
		    T3p = FMA(KP831469612, T3g, KP555570233 * T3f);
	       }
	       {
		    E T3i, T3s, T3m, T3q;
		    T3i = T3e + T3h;
		    ro[WS(os, 19)] = T3b - T3i;
		    ro[WS(os, 3)] = T3b + T3i;
		    T3s = T3o + T3p;
		    io[WS(os, 19)] = T3r - T3s;
		    io[WS(os, 3)] = T3r + T3s;
		    T3m = T3h - T3e;
		    io[WS(os, 27)] = T3l - T3m;
		    io[WS(os, 11)] = T3l + T3m;
		    T3q = T3o - T3p;
		    ro[WS(os, 27)] = T3n - T3q;
		    ro[WS(os, 11)] = T3n + T3q;
	       }
	  }
     }
}

static const kdft_desc desc = { 32, "n1_32", {340, 52, 32, 0}, &GENUS, 0, 0, 0, 0 };
void X(codelet_n1_32) (planner *p) {
     X(kdft_register) (p, n1_32, &desc);
}

#endif				/* HAVE_FMA */