diff Lib/fftw-3.2.1/doc/html/Simple-MPI-example.html @ 15:585caf503ef5 tip

Tidy up for ROLI
author Geogaddi\David <d.m.ronan@qmul.ac.uk>
date Tue, 17 May 2016 18:50:19 +0100
parents 636c989477e7
children
line wrap: on
line diff
--- a/Lib/fftw-3.2.1/doc/html/Simple-MPI-example.html	Wed May 04 11:02:59 2016 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,149 +0,0 @@
-<html lang="en">
-<head>
-<title>Simple MPI example - FFTW 3.2alpha3</title>
-<meta http-equiv="Content-Type" content="text/html">
-<meta name="description" content="FFTW 3.2alpha3">
-<meta name="generator" content="makeinfo 4.8">
-<link title="Top" rel="start" href="index.html#Top">
-<link rel="up" href="Distributed_002dmemory-FFTW-with-MPI.html#Distributed_002dmemory-FFTW-with-MPI" title="Distributed-memory FFTW with MPI">
-<link rel="prev" href="Linking-and-Initializing-MPI-FFTW.html#Linking-and-Initializing-MPI-FFTW" title="Linking and Initializing MPI FFTW">
-<link rel="next" href="MPI-data-distribution.html#MPI-data-distribution" title="MPI data distribution">
-<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
-<!--
-This manual is for FFTW
-(version 3.2alpha3, 14 August 2007).
-
-Copyright (C) 2003 Matteo Frigo.
-
-Copyright (C) 2003 Massachusetts Institute of Technology.
-
-     Permission is granted to make and distribute verbatim copies of
-     this manual provided the copyright notice and this permission
-     notice are preserved on all copies.
-
-     Permission is granted to copy and distribute modified versions of
-     this manual under the conditions for verbatim copying, provided
-     that the entire resulting derived work is distributed under the
-     terms of a permission notice identical to this one.
-
-     Permission is granted to copy and distribute translations of this
-     manual into another language, under the above conditions for
-     modified versions, except that this permission notice may be
-     stated in a translation approved by the Free Software Foundation.
-   -->
-<meta http-equiv="Content-Style-Type" content="text/css">
-<style type="text/css"><!--
-  pre.display { font-family:inherit }
-  pre.format  { font-family:inherit }
-  pre.smalldisplay { font-family:inherit; font-size:smaller }
-  pre.smallformat  { font-family:inherit; font-size:smaller }
-  pre.smallexample { font-size:smaller }
-  pre.smalllisp    { font-size:smaller }
-  span.sc    { font-variant:small-caps }
-  span.roman { font-family:serif; font-weight:normal; } 
-  span.sansserif { font-family:sans-serif; font-weight:normal; } 
---></style>
-</head>
-<body>
-<div class="node">
-<p>
-<a name="Simple-MPI-example"></a>
-Next:&nbsp;<a rel="next" accesskey="n" href="MPI-data-distribution.html#MPI-data-distribution">MPI data distribution</a>,
-Previous:&nbsp;<a rel="previous" accesskey="p" href="Linking-and-Initializing-MPI-FFTW.html#Linking-and-Initializing-MPI-FFTW">Linking and Initializing MPI FFTW</a>,
-Up:&nbsp;<a rel="up" accesskey="u" href="Distributed_002dmemory-FFTW-with-MPI.html#Distributed_002dmemory-FFTW-with-MPI">Distributed-memory FFTW with MPI</a>
-<hr>
-</div>
-
-<h3 class="section">6.3 Simple MPI example</h3>
-
-<p>Before we document the FFTW MPI interface in detail, we begin with a
-simple example outlining how one would perform a two-dimensional
-<code>N0</code> by <code>N1</code> complex DFT.
-
-<pre class="example">     #include &lt;fftw3-mpi.h&gt;
-     
-     int main(int argc, char **argv)
-     {
-         const ptrdiff_t N0 = ..., N1 = ...;
-         fftw_plan plan;
-         fftw_complex *data;
-         ptrdiff_t alloc_local, local_n0, local_0_start, i, j;
-     
-         MPI_Init(&amp;argc, &amp;argv);
-         fftw_mpi_init();
-     
-         /* <span class="roman">get local data size and allocate</span> */
-         alloc_local = fftw3_mpi_local_size_2d(N0, N1, MPI_COMM_WORLD,
-                                              &amp;local_n0, &amp;local_0_start);
-         data = (fftw_complex *) fftw_malloc(sizeof(fftw_complex) * alloc_local);
-     
-         /* <span class="roman">create plan for forward DFT</span> */
-         plan = fftw_mpi_plan_dft_2d(N0, N1, data, data, MPI_COMM_WORLD,
-                                     FFTW_FORWARD, FFTW_ESTIMATE);
-     
-         /* <span class="roman">initialize data to some function</span> my_function(x,y) */
-         for (i = 0; i &lt; local_n0; ++i) for (j = 0; j &lt; N1; ++j)
-            data[i*N1 + j] = my_function(local_0_start + i, j);
-     
-         /* <span class="roman">compute transforms, in-place, as many times as desired</span> */
-         fftw_execute(plan);
-     
-         fftw_destroy_plan(plan);
-     
-         MPI_Finalize();
-     }
-</pre>
-   <p>As can be seen above, the MPI interface follows the same basic style
-of allocate/plan/execute/destroy as the serial FFTW routines.  All of
-the MPI-specific routines are prefixed with `<samp><span class="samp">fftw_mpi_</span></samp>' instead
-of `<samp><span class="samp">fftw_</span></samp>'.  There are a few important differences, however:
-
-   <p>First, we must call <code>fftw_mpi_init()</code> after calling
-<code>MPI_Init</code> (required in all MPI programs) and before calling any
-other `<samp><span class="samp">fftw_mpi_</span></samp>' routine. 
-<a name="index-MPI_005fInit-340"></a><a name="index-fftw_005fmpi_005finit-341"></a>
-Second, when we create the plan with <code>fftw_mpi_plan_dft_2d</code>,
-analogous to <code>fftw_plan_dft_2d</code>, we pass an additional argument:
-the communicator, indicating which processes will participate in the
-transform (here <code>MPI_COMM_WORLD</code>, indicating all processes). 
-Whenever you create, execute, or destroy a plan for an MPI transform,
-you must call the corresponding FFTW routine on <em>all</em> processes
-in the communicator for that transform.  (That is, these are
-<em>collective</em> calls.)  Note that the plan for the MPI transform
-uses the standard <code>fftw_execute</code> and <code>fftw_destroy</code>
-routines (the new-array execute routines also work). 
-<a name="index-collective-function-342"></a><a name="index-fftw_005fmpi_005fplan_005fdft_005f2d-343"></a><a name="index-MPI_005fCOMM_005fWORLD-344"></a>
-Third, all of the FFTW MPI routines take <code>ptrdiff_t</code> arguments
-instead of <code>int</code> as for the serial FFTW.  <code>ptrdiff_t</code> is a
-standard C integer type which is (at least) 32 bits wide on a 32-bit
-machine and 64 bits wide on a 64-bit machine.  This is to make it easy
-to specify very large parallel transforms on a 64-bit machine.  (You
-can specify 64-bit transform sizes in the serial FFTW, too, but only
-by using the `<samp><span class="samp">guru64</span></samp>' planner interface.  See <a href="64_002dbit-Guru-Interface.html#g_t64_002dbit-Guru-Interface">64-bit Guru Interface</a>.) 
-<a name="index-ptrdiff_005ft-345"></a><a name="index-g_t64_002dbit-architecture-346"></a>
-Fourth, and most importantly, you don't allocate the entire
-two-dimensional array on each process.  Instead, you call
-<code>fftw_mpi_local_size_2d</code> to find out what <code>portion</code> of the
-array resides on each processor, and how much space to allocate. 
-Here, the portion of the array on each process is a <code>local_n0</code> by
-<code>N1</code> slice of the total array, starting at index
-<code>local_0_start</code>.  The total number of <code>fftw_complex</code> numbers
-to allocate is given by the <code>alloc_local</code> return value, which
-<em>may</em> be greater than <code>local_n0 * N1</code> (in case some
-intermediate calculations require additional storage).  The data
-distribution in FFTW's MPI interface is described in more detail by
-the next section. 
-<a name="index-fftw_005fmpi_005flocal_005fsize_005f2d-347"></a><a name="index-data-distribution-348"></a>
-Given the portion of the array that resides on the local process, it
-is straightforward to initialize the data (here to a function
-<code>myfunction</code>) and otherwise manipulate it.  Of course, at the end
-of the program you may want to output the data somehow, but
-synchronizing this output is up to you and is beyond the scope of this
-manual.  (One good way to output a large multi-dimensional distributed
-array in MPI to a portable binary file is to use the free HDF5
-library; see the <a href="http://www.hdfgroup.org/">HDF home page</a>.) 
-<a name="index-HDF5-349"></a>
-<!--  -->
-
-   </body></html>
-