diff Lib/fftw-3.2.1/doc/html/.svn/text-base/Multi_002ddimensional-Transforms.html.svn-base @ 15:585caf503ef5 tip

Tidy up for ROLI
author Geogaddi\David <d.m.ronan@qmul.ac.uk>
date Tue, 17 May 2016 18:50:19 +0100
parents 636c989477e7
children
line wrap: on
line diff
--- a/Lib/fftw-3.2.1/doc/html/.svn/text-base/Multi_002ddimensional-Transforms.html.svn-base	Wed May 04 11:02:59 2016 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,101 +0,0 @@
-<html lang="en">
-<head>
-<title>Multi-dimensional Transforms - FFTW 3.2.1</title>
-<meta http-equiv="Content-Type" content="text/html">
-<meta name="description" content="FFTW 3.2.1">
-<meta name="generator" content="makeinfo 4.8">
-<link title="Top" rel="start" href="index.html#Top">
-<link rel="up" href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" title="What FFTW Really Computes">
-<link rel="prev" href="1d-Discrete-Hartley-Transforms-_0028DHTs_0029.html#g_t1d-Discrete-Hartley-Transforms-_0028DHTs_0029" title="1d Discrete Hartley Transforms (DHTs)">
-<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
-<!--
-This manual is for FFTW
-(version 3.2.1, 5 February 2009).
-
-Copyright (C) 2003 Matteo Frigo.
-
-Copyright (C) 2003 Massachusetts Institute of Technology.
-
-     Permission is granted to make and distribute verbatim copies of
-     this manual provided the copyright notice and this permission
-     notice are preserved on all copies.
-
-     Permission is granted to copy and distribute modified versions of
-     this manual under the conditions for verbatim copying, provided
-     that the entire resulting derived work is distributed under the
-     terms of a permission notice identical to this one.
-
-     Permission is granted to copy and distribute translations of this
-     manual into another language, under the above conditions for
-     modified versions, except that this permission notice may be
-     stated in a translation approved by the Free Software Foundation.
-   -->
-<meta http-equiv="Content-Style-Type" content="text/css">
-<style type="text/css"><!--
-  pre.display { font-family:inherit }
-  pre.format  { font-family:inherit }
-  pre.smalldisplay { font-family:inherit; font-size:smaller }
-  pre.smallformat  { font-family:inherit; font-size:smaller }
-  pre.smallexample { font-size:smaller }
-  pre.smalllisp    { font-size:smaller }
-  span.sc    { font-variant:small-caps }
-  span.roman { font-family:serif; font-weight:normal; } 
-  span.sansserif { font-family:sans-serif; font-weight:normal; } 
---></style>
-</head>
-<body>
-<div class="node">
-<p>
-<a name="Multi-dimensional-Transforms"></a>
-<a name="Multi_002ddimensional-Transforms"></a>
-Previous:&nbsp;<a rel="previous" accesskey="p" href="1d-Discrete-Hartley-Transforms-_0028DHTs_0029.html#g_t1d-Discrete-Hartley-Transforms-_0028DHTs_0029">1d Discrete Hartley Transforms (DHTs)</a>,
-Up:&nbsp;<a rel="up" accesskey="u" href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes">What FFTW Really Computes</a>
-<hr>
-</div>
-
-<h4 class="subsection">4.8.6 Multi-dimensional Transforms</h4>
-
-<p>The multi-dimensional transforms of FFTW, in general, compute simply the
-separable product of the given 1d transform along each dimension of the
-array.  Since each of these transforms is unnormalized, computing the
-forward followed by the backward/inverse multi-dimensional transform
-will result in the original array scaled by the product of the
-normalization factors for each dimension (e.g. the product of the
-dimension sizes, for a multi-dimensional DFT).
-
-   <p><a name="index-r2c-315"></a>The definition of FFTW's multi-dimensional DFT of real data (r2c)
-deserves special attention.  In this case, we logically compute the full
-multi-dimensional DFT of the input data; since the input data are purely
-real, the output data have the Hermitian symmetry and therefore only one
-non-redundant half need be stored.  More specifically, for an n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&nbsp;&hellip;&nbsp;&times;&nbsp;n<sub>d-1</sub> multi-dimensional real-input DFT, the full (logical) complex output array
-<i>Y</i>[<i>k</i><sub>0</sub>, <i>k</i><sub>1</sub>, ...,
-<i>k</i><sub><i>d-1</i></sub>]has the symmetry:
-<i>Y</i>[<i>k</i><sub>0</sub>, <i>k</i><sub>1</sub>, ...,
-<i>k</i><sub><i>d-1</i></sub>] = <i>Y</i>[<i>n</i><sub>0</sub> -
-<i>k</i><sub>0</sub>, <i>n</i><sub>1</sub> - <i>k</i><sub>1</sub>, ...,
-<i>n</i><sub><i>d-1</i></sub> - <i>k</i><sub><i>d-1</i></sub>]<sup>*</sup>(where each dimension is periodic).  Because of this symmetry, we only
-store the
-<i>k</i><sub><i>d-1</i></sub> = 0...<i>n</i><sub><i>d-1</i></sub>/2+1elements of the <em>last</em> dimension (division by 2 is rounded
-down).  (We could instead have cut any other dimension in half, but the
-last dimension proved computationally convenient.)  This results in the
-peculiar array format described in more detail by <a href="Real_002ddata-DFT-Array-Format.html#Real_002ddata-DFT-Array-Format">Real-data DFT Array Format</a>.
-
-   <p>The multi-dimensional c2r transform is simply the unnormalized inverse
-of the r2c transform.  i.e. it is the same as FFTW's complex backward
-multi-dimensional DFT, operating on a Hermitian input array in the
-peculiar format mentioned above and outputting a real array (since the
-DFT output is purely real).
-
-   <p>We should remind the user that the separable product of 1d transforms
-along each dimension, as computed by FFTW, is not always the same thing
-as the usual multi-dimensional transform.  A multi-dimensional
-<code>R2HC</code> (or <code>HC2R</code>) transform is not identical to the
-multi-dimensional DFT, requiring some post-processing to combine the
-requisite real and imaginary parts, as was described in <a href="The-Halfcomplex_002dformat-DFT.html#The-Halfcomplex_002dformat-DFT">The Halfcomplex-format DFT</a>.  Likewise, FFTW's multidimensional
-<code>FFTW_DHT</code> r2r transform is not the same thing as the logical
-multi-dimensional discrete Hartley transform defined in the literature,
-as discussed in <a href="The-Discrete-Hartley-Transform.html#The-Discrete-Hartley-Transform">The Discrete Hartley Transform</a>.
-
-<!-- ************************************************************ -->
-</body></html>
-