diff Lib/fftw-3.2.1/doc/html/.svn/text-base/1d-Real_002dodd-DFTs-_0028DSTs_0029.html.svn-base @ 15:585caf503ef5 tip

Tidy up for ROLI
author Geogaddi\David <d.m.ronan@qmul.ac.uk>
date Tue, 17 May 2016 18:50:19 +0100
parents 636c989477e7
children
line wrap: on
line diff
--- a/Lib/fftw-3.2.1/doc/html/.svn/text-base/1d-Real_002dodd-DFTs-_0028DSTs_0029.html.svn-base	Wed May 04 11:02:59 2016 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,123 +0,0 @@
-<html lang="en">
-<head>
-<title>1d Real-odd DFTs (DSTs) - FFTW 3.2.1</title>
-<meta http-equiv="Content-Type" content="text/html">
-<meta name="description" content="FFTW 3.2.1">
-<meta name="generator" content="makeinfo 4.8">
-<link title="Top" rel="start" href="index.html#Top">
-<link rel="up" href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" title="What FFTW Really Computes">
-<link rel="prev" href="1d-Real_002deven-DFTs-_0028DCTs_0029.html#g_t1d-Real_002deven-DFTs-_0028DCTs_0029" title="1d Real-even DFTs (DCTs)">
-<link rel="next" href="1d-Discrete-Hartley-Transforms-_0028DHTs_0029.html#g_t1d-Discrete-Hartley-Transforms-_0028DHTs_0029" title="1d Discrete Hartley Transforms (DHTs)">
-<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
-<!--
-This manual is for FFTW
-(version 3.2.1, 5 February 2009).
-
-Copyright (C) 2003 Matteo Frigo.
-
-Copyright (C) 2003 Massachusetts Institute of Technology.
-
-     Permission is granted to make and distribute verbatim copies of
-     this manual provided the copyright notice and this permission
-     notice are preserved on all copies.
-
-     Permission is granted to copy and distribute modified versions of
-     this manual under the conditions for verbatim copying, provided
-     that the entire resulting derived work is distributed under the
-     terms of a permission notice identical to this one.
-
-     Permission is granted to copy and distribute translations of this
-     manual into another language, under the above conditions for
-     modified versions, except that this permission notice may be
-     stated in a translation approved by the Free Software Foundation.
-   -->
-<meta http-equiv="Content-Style-Type" content="text/css">
-<style type="text/css"><!--
-  pre.display { font-family:inherit }
-  pre.format  { font-family:inherit }
-  pre.smalldisplay { font-family:inherit; font-size:smaller }
-  pre.smallformat  { font-family:inherit; font-size:smaller }
-  pre.smallexample { font-size:smaller }
-  pre.smalllisp    { font-size:smaller }
-  span.sc    { font-variant:small-caps }
-  span.roman { font-family:serif; font-weight:normal; } 
-  span.sansserif { font-family:sans-serif; font-weight:normal; } 
---></style>
-</head>
-<body>
-<div class="node">
-<p>
-<a name="1d-Real-odd-DFTs-(DSTs)"></a>
-<a name="g_t1d-Real_002dodd-DFTs-_0028DSTs_0029"></a>
-Next:&nbsp;<a rel="next" accesskey="n" href="1d-Discrete-Hartley-Transforms-_0028DHTs_0029.html#g_t1d-Discrete-Hartley-Transforms-_0028DHTs_0029">1d Discrete Hartley Transforms (DHTs)</a>,
-Previous:&nbsp;<a rel="previous" accesskey="p" href="1d-Real_002deven-DFTs-_0028DCTs_0029.html#g_t1d-Real_002deven-DFTs-_0028DCTs_0029">1d Real-even DFTs (DCTs)</a>,
-Up:&nbsp;<a rel="up" accesskey="u" href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes">What FFTW Really Computes</a>
-<hr>
-</div>
-
-<h4 class="subsection">4.8.4 1d Real-odd DFTs (DSTs)</h4>
-
-<p>The Real-odd symmetry DFTs in FFTW are exactly equivalent to the unnormalized
-forward (and backward) DFTs as defined above, where the input array
-X of length N is purely real and is also <dfn>odd</dfn> symmetry.  In
-this case, the output is odd symmetry and purely imaginary. 
-<a name="index-real_002dodd-DFT-302"></a><a name="index-RODFT-303"></a>
-<a name="index-RODFT00-304"></a>For the case of <code>RODFT00</code>, this odd symmetry means that
-<i>X<sub>j</sub> = -X<sub>N-j</sub></i>,where we take X to be periodic so that
-<i>X<sub>N</sub> = X</i><sub>0</sub>. Because of this redundancy, only the first n real numbers
-starting at j=1 are actually stored (the j=0 element is
-zero), where N = 2(n+1).
-
-   <p>The proper definition of odd symmetry for <code>RODFT10</code>,
-<code>RODFT01</code>, and <code>RODFT11</code> transforms is somewhat more intricate
-because of the shifts by 1/2 of the input and/or output, although
-the corresponding boundary conditions are given in <a href="Real-even_002fodd-DFTs-_0028cosine_002fsine-transforms_0029.html#Real-even_002fodd-DFTs-_0028cosine_002fsine-transforms_0029">Real even/odd DFTs (cosine/sine transforms)</a>.  Because of the odd symmetry, however,
-the cosine terms in the DFT all cancel and the remaining sine terms are
-written explicitly below.  This formulation often leads people to call
-such a transform a <dfn>discrete sine transform</dfn> (DST), although it is
-really just a special case of the DFT. 
-<a name="index-discrete-sine-transform-305"></a><a name="index-DST-306"></a>
-In each of the definitions below, we transform a real array X of
-length n to a real array Y of length n:
-
-<h5 class="subsubheading">RODFT00 (DST-I)</h5>
-
-<p><a name="index-RODFT00-307"></a>An <code>RODFT00</code> transform (type-I DST) in FFTW is defined by:
-<center><img src="equation-rodft00.png" align="top">.</center>
-
-<h5 class="subsubheading">RODFT10 (DST-II)</h5>
-
-<p><a name="index-RODFT10-308"></a>An <code>RODFT10</code> transform (type-II DST) in FFTW is defined by:
-<center><img src="equation-rodft10.png" align="top">.</center>
-
-<h5 class="subsubheading">RODFT01 (DST-III)</h5>
-
-<p><a name="index-RODFT01-309"></a>An <code>RODFT01</code> transform (type-III DST) in FFTW is defined by:
-<center><img src="equation-rodft01.png" align="top">.</center>In the case of n=1, this reduces to
-<i>Y</i><sub>0</sub> = <i>X</i><sub>0</sub>.
-
-<h5 class="subsubheading">RODFT11 (DST-IV)</h5>
-
-<p><a name="index-RODFT11-310"></a>An <code>RODFT11</code> transform (type-IV DST) in FFTW is defined by:
-<center><img src="equation-rodft11.png" align="top">.</center>
-
-<h5 class="subsubheading">Inverses and Normalization</h5>
-
-<p>These definitions correspond directly to the unnormalized DFTs used
-elsewhere in FFTW (hence the factors of 2 in front of the
-summations).  The unnormalized inverse of <code>RODFT00</code> is
-<code>RODFT00</code>, of <code>RODFT10</code> is <code>RODFT01</code> and vice versa, and
-of <code>RODFT11</code> is <code>RODFT11</code>.  Each unnormalized inverse results
-in the original array multiplied by N, where N is the
-<em>logical</em> DFT size.  For <code>RODFT00</code>, N=2(n+1);
-otherwise, N=2n. 
-<a name="index-normalization-311"></a>
-In defining the discrete sine transform, some authors also include
-additional factors of
-&radic;2(or its inverse) multiplying selected inputs and/or outputs.  This is a
-mostly cosmetic change that makes the transform orthogonal, but
-sacrifices the direct equivalence to an antisymmetric DFT.
-
-<!-- =========> -->
-</body></html>
-