Mercurial > hg > batch-feature-extraction-tool
diff Lib/fftw-3.2.1/cell/spu/spu_t1fv_16.spuc @ 0:25bf17994ef1
First commit. VS2013, Codeblocks and Mac OSX configuration
author | Geogaddi\David <d.m.ronan@qmul.ac.uk> |
---|---|
date | Thu, 09 Jul 2015 01:12:16 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Lib/fftw-3.2.1/cell/spu/spu_t1fv_16.spuc Thu Jul 09 01:12:16 2015 +0100 @@ -0,0 +1,164 @@ +/* + * Copyright (c) 2003, 2007-8 Matteo Frigo + * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * + */ +/* Generated by: ../../genfft/gen_twiddle_c -standalone -fma -reorder-insns -simd -compact -variables 100000 -include fftw-spu.h -trivial-stores -n 16 -name X(spu_t1fv_16) */ + +/* + * This function contains 87 FP additions, 64 FP multiplications, + * (or, 53 additions, 30 multiplications, 34 fused multiply/add), + * 108 stack variables, 3 constants, and 32 memory accesses + */ +#include "fftw-spu.h" + +void X(spu_t1fv_16) (R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { + DVK(KP923879532, +0.923879532511286756128183189396788286822416626); + DVK(KP707106781, +0.707106781186547524400844362104849039284835938); + DVK(KP414213562, +0.414213562373095048801688724209698078569671875); + INT m; + R *x; + x = ri; + for (m = mb, W = W + (mb * ((TWVL / VL) * 30)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 30), MAKE_VOLATILE_STRIDE(rs)) { + V T14, T1h, Ta, TS, TJ, TT, T17, T1i, Tl, TV, T1b, T1k, Tw, TW, T1e; + V T1l, T1, T8, T3, T6, T7, T2, T5, T4, T9, TA, TH, TC, TF, Tz; + V TG, TB, TE, T16, T15, TD, TI, Tc, Tj, Te, Th, Tb, Ti, Td, Tg; + V T19, T1a, Tf, Tk, Tn, Tu, Tp, Ts, Tm, Tt, To, Tr, T1c, T1d, Tq; + V Tv, T10, T11, TY, TZ, TU, TX, T12, T13, TO, Ty, TL, TP, TK, Tx; + V TN, TQ, TM, TR, T1u, T1y, T1x, T1v, T1g, T1q, T1n, T1r, T18, T1f, T1j; + V T1m, T1p, T1s, T1o, T1t, T1w, T1C, T1z, T1D, T1B, T1E, T1A, T1F; + T1 = LD(&(x[0]), ms, &(x[0])); + T7 = LD(&(x[WS(rs, 12)]), ms, &(x[0])); + T8 = BYTWJ(&(W[TWVL * 22]), T7); + T2 = LD(&(x[WS(rs, 8)]), ms, &(x[0])); + T3 = BYTWJ(&(W[TWVL * 14]), T2); + T5 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); + T6 = BYTWJ(&(W[TWVL * 6]), T5); + T14 = VSUB(T1, T3); + T4 = VADD(T1, T3); + T9 = VADD(T6, T8); + T1h = VSUB(T6, T8); + Ta = VSUB(T4, T9); + TS = VADD(T4, T9); + Tz = LD(&(x[WS(rs, 14)]), ms, &(x[0])); + TA = BYTWJ(&(W[TWVL * 26]), Tz); + TG = LD(&(x[WS(rs, 10)]), ms, &(x[0])); + TH = BYTWJ(&(W[TWVL * 18]), TG); + TB = LD(&(x[WS(rs, 6)]), ms, &(x[0])); + TC = BYTWJ(&(W[TWVL * 10]), TB); + TE = LD(&(x[WS(rs, 2)]), ms, &(x[0])); + TF = BYTWJ(&(W[TWVL * 2]), TE); + TD = VADD(TA, TC); + T16 = VSUB(TA, TC); + T15 = VSUB(TF, TH); + TI = VADD(TF, TH); + TJ = VSUB(TD, TI); + TT = VADD(TI, TD); + T17 = VADD(T15, T16); + T1i = VSUB(T16, T15); + Tb = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); + Tc = BYTWJ(&(W[0]), Tb); + Ti = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)])); + Tj = BYTWJ(&(W[TWVL * 24]), Ti); + Td = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); + Te = BYTWJ(&(W[TWVL * 16]), Td); + Tg = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); + Th = BYTWJ(&(W[TWVL * 8]), Tg); + Tf = VADD(Tc, Te); + T19 = VSUB(Tc, Te); + T1a = VSUB(Th, Tj); + Tk = VADD(Th, Tj); + Tl = VSUB(Tf, Tk); + TV = VADD(Tf, Tk); + T1b = VFNMS(LDK(KP414213562), T1a, T19); + T1k = VFMA(LDK(KP414213562), T19, T1a); + Tm = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)])); + Tn = BYTWJ(&(W[TWVL * 28]), Tm); + Tt = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); + Tu = BYTWJ(&(W[TWVL * 20]), Tt); + To = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); + Tp = BYTWJ(&(W[TWVL * 12]), To); + Tr = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); + Ts = BYTWJ(&(W[TWVL * 4]), Tr); + Tq = VADD(Tn, Tp); + T1c = VSUB(Tn, Tp); + T1d = VSUB(Tu, Ts); + Tv = VADD(Ts, Tu); + Tw = VSUB(Tq, Tv); + TW = VADD(Tq, Tv); + T1e = VFNMS(LDK(KP414213562), T1d, T1c); + T1l = VFMA(LDK(KP414213562), T1c, T1d); + TU = VADD(TS, TT); + T10 = VSUB(TS, TT); + T11 = VSUB(TW, TV); + TX = VADD(TV, TW); + TY = VSUB(TU, TX); + TZ = VADD(TU, TX); + ST(&(x[WS(rs, 8)]), TY, ms, &(x[0])); + ST(&(x[0]), TZ, ms, &(x[0])); + T12 = VFNMSI(T11, T10); + T13 = VFMAI(T11, T10); + ST(&(x[WS(rs, 12)]), T12, ms, &(x[0])); + ST(&(x[WS(rs, 4)]), T13, ms, &(x[0])); + Tx = VADD(Tl, Tw); + TK = VSUB(Tw, Tl); + TO = VFMA(LDK(KP707106781), Tx, Ta); + Ty = VFNMS(LDK(KP707106781), Tx, Ta); + TL = VFNMS(LDK(KP707106781), TK, TJ); + TP = VFMA(LDK(KP707106781), TK, TJ); + TM = VFNMSI(TL, Ty); + TN = VFMAI(TL, Ty); + ST(&(x[WS(rs, 6)]), TM, ms, &(x[0])); + TR = VFMAI(TP, TO); + TQ = VFNMSI(TP, TO); + ST(&(x[WS(rs, 2)]), TR, ms, &(x[0])); + ST(&(x[WS(rs, 10)]), TN, ms, &(x[0])); + ST(&(x[WS(rs, 14)]), TQ, ms, &(x[0])); + T18 = VFMA(LDK(KP707106781), T17, T14); + T1u = VFNMS(LDK(KP707106781), T17, T14); + T1y = VSUB(T1e, T1b); + T1f = VADD(T1b, T1e); + T1g = VFNMS(LDK(KP923879532), T1f, T18); + T1q = VFMA(LDK(KP923879532), T1f, T18); + T1j = VFNMS(LDK(KP707106781), T1i, T1h); + T1x = VFMA(LDK(KP707106781), T1i, T1h); + T1v = VADD(T1k, T1l); + T1m = VSUB(T1k, T1l); + T1n = VFNMS(LDK(KP923879532), T1m, T1j); + T1r = VFMA(LDK(KP923879532), T1m, T1j); + T1o = VFNMSI(T1n, T1g); + T1p = VFMAI(T1n, T1g); + ST(&(x[WS(rs, 9)]), T1o, ms, &(x[WS(rs, 1)])); + T1t = VFMAI(T1r, T1q); + T1s = VFNMSI(T1r, T1q); + ST(&(x[WS(rs, 15)]), T1t, ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 7)]), T1p, ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 1)]), T1s, ms, &(x[WS(rs, 1)])); + T1w = VFNMS(LDK(KP923879532), T1v, T1u); + T1C = VFMA(LDK(KP923879532), T1v, T1u); + T1z = VFNMS(LDK(KP923879532), T1y, T1x); + T1D = VFMA(LDK(KP923879532), T1y, T1x); + T1A = VFNMSI(T1z, T1w); + T1B = VFMAI(T1z, T1w); + ST(&(x[WS(rs, 5)]), T1A, ms, &(x[WS(rs, 1)])); + T1F = VFNMSI(T1D, T1C); + T1E = VFMAI(T1D, T1C); + ST(&(x[WS(rs, 13)]), T1F, ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 11)]), T1B, ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 3)]), T1E, ms, &(x[WS(rs, 1)])); + } +}