diff Lib/fftw-3.2.1/cell/spu/spu_t1fv_15.spuc @ 0:25bf17994ef1

First commit. VS2013, Codeblocks and Mac OSX configuration
author Geogaddi\David <d.m.ronan@qmul.ac.uk>
date Thu, 09 Jul 2015 01:12:16 +0100
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Lib/fftw-3.2.1/cell/spu/spu_t1fv_15.spuc	Thu Jul 09 01:12:16 2015 +0100
@@ -0,0 +1,173 @@
+/*
+ * Copyright (c) 2003, 2007-8 Matteo Frigo
+ * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
+ *
+ */
+/* Generated by: ../../genfft/gen_twiddle_c -standalone -fma -reorder-insns -simd -compact -variables 100000 -include fftw-spu.h -trivial-stores -n 15 -name X(spu_t1fv_15) */
+
+/*
+ * This function contains 92 FP additions, 77 FP multiplications,
+ * (or, 50 additions, 35 multiplications, 42 fused multiply/add),
+ * 117 stack variables, 8 constants, and 30 memory accesses
+ */
+#include "fftw-spu.h"
+
+void X(spu_t1fv_15) (R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) {
+     DVK(KP823639103, +0.823639103546331925877420039278190003029660514);
+     DVK(KP910592997, +0.910592997310029334643087372129977886038870291);
+     DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
+     DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
+     DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
+     DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
+     DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
+     DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
+     INT m;
+     R *x;
+     x = ri;
+     for (m = mb, W = W + (mb * ((TWVL / VL) * 28)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 28), MAKE_VOLATILE_STRIDE(rs)) {
+	  V T1g, T7, TU, T17, T1a, To, TL, TK, TF, T1j, T1l, T1d, T1e, T11, T13;
+	  V T1, T5, T3, T4, T2, T6, T9, Tq, Ty, Th, Te, T15, Tv, T18, TD;
+	  V T19, Tm, T16, T8, Tp, Tx, Tg, Tb, Td, Ta, Tc, Ts, Tu, Tr, Tt;
+	  V TA, TC, Tz, TB, Tj, Tl, Ti, Tk, T1h, T1i, TV, TW, Tf, Tn, TY;
+	  V TZ, Tw, TE, TX, T10, T12, T1k, T1J, T1I, T1G, T1H, TQ, TM, TT, TJ;
+	  V TP, TI, TH, TG, TR, TS, TO, TN, T1r, T1n, T1D, T1z, T1q, T1c, T1C;
+	  V T1w, T1f, T1x, T1y, T1m, T1v, T1b, T1u, T14, T1p, T1F, T1o, T1E, T1t, T1B;
+	  V T1s, T1A;
+	  T1 = LD(&(x[0]), ms, &(x[0]));
+	  T4 = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
+	  T5 = BYTWJ(&(W[TWVL * 18]), T4);
+	  T2 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
+	  T3 = BYTWJ(&(W[TWVL * 8]), T2);
+	  T1g = VSUB(T5, T3);
+	  T6 = VADD(T3, T5);
+	  T7 = VADD(T1, T6);
+	  TU = VFNMS(LDK(KP500000000), T6, T1);
+	  T8 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
+	  T9 = BYTWJ(&(W[TWVL * 4]), T8);
+	  Tp = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
+	  Tq = BYTWJ(&(W[TWVL * 10]), Tp);
+	  Tx = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
+	  Ty = BYTWJ(&(W[TWVL * 16]), Tx);
+	  Tg = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
+	  Th = BYTWJ(&(W[TWVL * 22]), Tg);
+	  Ta = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
+	  Tb = BYTWJ(&(W[TWVL * 14]), Ta);
+	  Tc = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
+	  Td = BYTWJ(&(W[TWVL * 24]), Tc);
+	  Te = VADD(Tb, Td);
+	  T15 = VSUB(Td, Tb);
+	  Tr = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
+	  Ts = BYTWJ(&(W[TWVL * 20]), Tr);
+	  Tt = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
+	  Tu = BYTWJ(&(W[0]), Tt);
+	  Tv = VADD(Ts, Tu);
+	  T18 = VSUB(Tu, Ts);
+	  Tz = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
+	  TA = BYTWJ(&(W[TWVL * 26]), Tz);
+	  TB = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
+	  TC = BYTWJ(&(W[TWVL * 6]), TB);
+	  TD = VADD(TA, TC);
+	  T19 = VSUB(TC, TA);
+	  Ti = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
+	  Tj = BYTWJ(&(W[TWVL * 2]), Ti);
+	  Tk = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
+	  Tl = BYTWJ(&(W[TWVL * 12]), Tk);
+	  Tm = VADD(Tj, Tl);
+	  T16 = VSUB(Tl, Tj);
+	  T17 = VSUB(T15, T16);
+	  T1h = VADD(T15, T16);
+	  T1i = VADD(T18, T19);
+	  T1a = VSUB(T18, T19);
+	  Tf = VADD(T9, Te);
+	  TV = VFNMS(LDK(KP500000000), Te, T9);
+	  TW = VFNMS(LDK(KP500000000), Tm, Th);
+	  Tn = VADD(Th, Tm);
+	  To = VADD(Tf, Tn);
+	  TL = VSUB(Tf, Tn);
+	  TY = VFNMS(LDK(KP500000000), Tv, Tq);
+	  Tw = VADD(Tq, Tv);
+	  TE = VADD(Ty, TD);
+	  TZ = VFNMS(LDK(KP500000000), TD, Ty);
+	  TK = VSUB(Tw, TE);
+	  TF = VADD(Tw, TE);
+	  T1j = VADD(T1h, T1i);
+	  T1l = VSUB(T1h, T1i);
+	  TX = VADD(TV, TW);
+	  T1d = VSUB(TV, TW);
+	  T1e = VSUB(TY, TZ);
+	  T10 = VADD(TY, TZ);
+	  T11 = VADD(TX, T10);
+	  T13 = VSUB(TX, T10);
+	  T12 = VFNMS(LDK(KP250000000), T11, TU);
+	  T1G = VADD(TU, T11);
+	  T1H = VMUL(LDK(KP866025403), VADD(T1g, T1j));
+	  T1k = VFNMS(LDK(KP250000000), T1j, T1g);
+	  T1J = VFMAI(T1H, T1G);
+	  T1I = VFNMSI(T1H, T1G);
+	  ST(&(x[WS(rs, 5)]), T1I, ms, &(x[WS(rs, 1)]));
+	  ST(&(x[WS(rs, 10)]), T1J, ms, &(x[0]));
+	  TQ = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TK, TL));
+	  TM = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TL, TK));
+	  TG = VADD(To, TF);
+	  TI = VSUB(To, TF);
+	  TT = VADD(T7, TG);
+	  TH = VFNMS(LDK(KP250000000), TG, T7);
+	  TJ = VFNMS(LDK(KP559016994), TI, TH);
+	  TP = VFMA(LDK(KP559016994), TI, TH);
+	  ST(&(x[0]), TT, ms, &(x[0]));
+	  TS = VFMAI(TQ, TP);
+	  TR = VFNMSI(TQ, TP);
+	  ST(&(x[WS(rs, 9)]), TS, ms, &(x[WS(rs, 1)]));
+	  TN = VFNMSI(TM, TJ);
+	  TO = VFMAI(TM, TJ);
+	  ST(&(x[WS(rs, 3)]), TN, ms, &(x[WS(rs, 1)]));
+	  ST(&(x[WS(rs, 12)]), TO, ms, &(x[0]));
+	  ST(&(x[WS(rs, 6)]), TR, ms, &(x[0]));
+	  T1f = VFMA(LDK(KP618033988), T1e, T1d);
+	  T1x = VFNMS(LDK(KP618033988), T1d, T1e);
+	  T1y = VFNMS(LDK(KP559016994), T1l, T1k);
+	  T1m = VFMA(LDK(KP559016994), T1l, T1k);
+	  T1r = VMUL(LDK(KP951056516), VFMA(LDK(KP910592997), T1m, T1f));
+	  T1n = VMUL(LDK(KP951056516), VFNMS(LDK(KP910592997), T1m, T1f));
+	  T1D = VMUL(LDK(KP951056516), VFMA(LDK(KP910592997), T1y, T1x));
+	  T1z = VMUL(LDK(KP951056516), VFNMS(LDK(KP910592997), T1y, T1x));
+	  T1v = VFNMS(LDK(KP618033988), T17, T1a);
+	  T1b = VFMA(LDK(KP618033988), T1a, T17);
+	  T1u = VFNMS(LDK(KP559016994), T13, T12);
+	  T14 = VFMA(LDK(KP559016994), T13, T12);
+	  T1q = VFNMS(LDK(KP823639103), T1b, T14);
+	  T1c = VFMA(LDK(KP823639103), T1b, T14);
+	  T1C = VFNMS(LDK(KP823639103), T1v, T1u);
+	  T1w = VFMA(LDK(KP823639103), T1v, T1u);
+	  T1p = VFMAI(T1n, T1c);
+	  T1o = VFNMSI(T1n, T1c);
+	  ST(&(x[WS(rs, 1)]), T1o, ms, &(x[WS(rs, 1)]));
+	  T1F = VFMAI(T1D, T1C);
+	  T1E = VFNMSI(T1D, T1C);
+	  ST(&(x[WS(rs, 8)]), T1E, ms, &(x[0]));
+	  ST(&(x[WS(rs, 7)]), T1F, ms, &(x[WS(rs, 1)]));
+	  ST(&(x[WS(rs, 14)]), T1p, ms, &(x[0]));
+	  T1t = VFMAI(T1r, T1q);
+	  T1s = VFNMSI(T1r, T1q);
+	  ST(&(x[WS(rs, 11)]), T1s, ms, &(x[WS(rs, 1)]));
+	  T1B = VFMAI(T1z, T1w);
+	  T1A = VFNMSI(T1z, T1w);
+	  ST(&(x[WS(rs, 13)]), T1A, ms, &(x[WS(rs, 1)]));
+	  ST(&(x[WS(rs, 2)]), T1B, ms, &(x[0]));
+	  ST(&(x[WS(rs, 4)]), T1t, ms, &(x[0]));
+     }
+}