Mercurial > hg > batch-feature-extraction-tool
diff Lib/fftw-3.2.1/cell/spu/spu_t1fv_12.spuc @ 0:25bf17994ef1
First commit. VS2013, Codeblocks and Mac OSX configuration
author | Geogaddi\David <d.m.ronan@qmul.ac.uk> |
---|---|
date | Thu, 09 Jul 2015 01:12:16 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Lib/fftw-3.2.1/cell/spu/spu_t1fv_12.spuc Thu Jul 09 01:12:16 2015 +0100 @@ -0,0 +1,125 @@ +/* + * Copyright (c) 2003, 2007-8 Matteo Frigo + * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * + */ +/* Generated by: ../../genfft/gen_twiddle_c -standalone -fma -reorder-insns -simd -compact -variables 100000 -include fftw-spu.h -trivial-stores -n 12 -name X(spu_t1fv_12) */ + +/* + * This function contains 59 FP additions, 42 FP multiplications, + * (or, 41 additions, 24 multiplications, 18 fused multiply/add), + * 75 stack variables, 2 constants, and 24 memory accesses + */ +#include "fftw-spu.h" + +void X(spu_t1fv_12) (R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { + DVK(KP866025403, +0.866025403784438646763723170752936183471402627); + DVK(KP500000000, +0.500000000000000000000000000000000000000000000); + INT m; + R *x; + x = ri; + for (m = mb, W = W + (mb * ((TWVL / VL) * 22)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(rs)) { + V TY, T7, Tf, TZ, TE, TQ, T11, Tw, TA, T12, Tr, TP, T1, T3, Td; + V Tb, T9, T5, T2, Tc, Ta, T8, T4, TC, T6, TD, Te, Ti, Tk, Ty; + V Tu, Tp, Tn, Th, Tj, Tx, Tt, To, Tm, Tl, Tv, Tq, Tz, T16, T17; + V T14, T15, T10, T13, T18, T19, TM, TN, TI, Ts, TF, TJ, Tg, TB, TH; + V TK, TG, TL, TR, TV, TO, TU, TT, TW, TS, TX; + T1 = LD(&(x[0]), ms, &(x[0])); + T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); + T3 = BYTWJ(&(W[TWVL * 6]), T2); + Tc = LD(&(x[WS(rs, 2)]), ms, &(x[0])); + Td = BYTWJ(&(W[TWVL * 2]), Tc); + Ta = LD(&(x[WS(rs, 10)]), ms, &(x[0])); + Tb = BYTWJ(&(W[TWVL * 18]), Ta); + T8 = LD(&(x[WS(rs, 6)]), ms, &(x[0])); + T9 = BYTWJ(&(W[TWVL * 10]), T8); + T4 = LD(&(x[WS(rs, 8)]), ms, &(x[0])); + T5 = BYTWJ(&(W[TWVL * 14]), T4); + T6 = VADD(T3, T5); + TC = VSUB(T5, T3); + TY = VADD(T1, T6); + T7 = VFNMS(LDK(KP500000000), T6, T1); + TD = VSUB(Td, Tb); + Te = VADD(Tb, Td); + Tf = VFNMS(LDK(KP500000000), Te, T9); + TZ = VADD(T9, Te); + TE = VSUB(TC, TD); + TQ = VADD(TC, TD); + Th = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); + Ti = BYTWJ(&(W[TWVL * 20]), Th); + Tj = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); + Tk = BYTWJ(&(W[TWVL * 12]), Tj); + Tx = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); + Ty = BYTWJ(&(W[TWVL * 16]), Tx); + Tt = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); + Tu = BYTWJ(&(W[TWVL * 4]), Tt); + To = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); + Tp = BYTWJ(&(W[TWVL * 8]), To); + Tm = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); + Tn = BYTWJ(&(W[0]), Tm); + Tv = VADD(Tk, Ti); + Tl = VSUB(Ti, Tk); + T11 = VADD(Tu, Tv); + Tw = VFNMS(LDK(KP500000000), Tv, Tu); + Tq = VSUB(Tn, Tp); + Tz = VADD(Tn, Tp); + TA = VFNMS(LDK(KP500000000), Tz, Ty); + T12 = VADD(Ty, Tz); + Tr = VADD(Tl, Tq); + TP = VSUB(Tl, Tq); + T10 = VSUB(TY, TZ); + T16 = VADD(TY, TZ); + T17 = VADD(T11, T12); + T13 = VSUB(T11, T12); + T14 = VFNMSI(T13, T10); + T15 = VFMAI(T13, T10); + ST(&(x[WS(rs, 9)]), T14, ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 3)]), T15, ms, &(x[WS(rs, 1)])); + T18 = VSUB(T16, T17); + T19 = VADD(T16, T17); + ST(&(x[WS(rs, 6)]), T18, ms, &(x[0])); + ST(&(x[0]), T19, ms, &(x[0])); + Tg = VSUB(T7, Tf); + TM = VADD(T7, Tf); + TI = VFNMS(LDK(KP866025403), Tr, Tg); + Ts = VFMA(LDK(KP866025403), Tr, Tg); + TN = VADD(Tw, TA); + TB = VSUB(Tw, TA); + TF = VFNMS(LDK(KP866025403), TE, TB); + TJ = VFMA(LDK(KP866025403), TE, TB); + TG = VFNMSI(TF, Ts); + TH = VFMAI(TF, Ts); + ST(&(x[WS(rs, 1)]), TG, ms, &(x[WS(rs, 1)])); + TL = VFMAI(TJ, TI); + TK = VFNMSI(TJ, TI); + ST(&(x[WS(rs, 7)]), TL, ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 11)]), TH, ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 5)]), TK, ms, &(x[WS(rs, 1)])); + TR = VMUL(LDK(KP866025403), VSUB(TP, TQ)); + TV = VMUL(LDK(KP866025403), VADD(TQ, TP)); + TO = VSUB(TM, TN); + TU = VADD(TM, TN); + TS = VFMAI(TR, TO); + TT = VFNMSI(TR, TO); + ST(&(x[WS(rs, 2)]), TS, ms, &(x[0])); + TX = VFNMSI(TV, TU); + TW = VFMAI(TV, TU); + ST(&(x[WS(rs, 8)]), TX, ms, &(x[0])); + ST(&(x[WS(rs, 10)]), TT, ms, &(x[0])); + ST(&(x[WS(rs, 4)]), TW, ms, &(x[0])); + } +}