comparison Lib/fftw-3.2.1/cell/dft-direct-cell.c @ 15:585caf503ef5 tip

Tidy up for ROLI
author Geogaddi\David <d.m.ronan@qmul.ac.uk>
date Tue, 17 May 2016 18:50:19 +0100
parents 636c989477e7
children
comparison
equal deleted inserted replaced
14:636c989477e7 15:585caf503ef5
1 /*
2 * Copyright (c) 2007 Massachusetts Institute of Technology
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 */
19
20 /* direct DFT solver via cell library */
21
22 #include "dft.h"
23 #include "ct.h"
24
25 #if HAVE_CELL
26
27 #include "simd.h"
28 #include "fftw-cell.h"
29
30 typedef struct {
31 solver super;
32 int cutdim;
33 } S;
34
35 typedef struct {
36 plan_dft super;
37 struct spu_radices radices;
38 /* strides expressed in reals */
39 INT n, is, os;
40 struct cell_iodim v[2];
41 int cutdim;
42 int sign;
43 int Wsz;
44 R *W;
45
46 /* optional twiddle factors for dftw: */
47 INT rw, mw; /* rw == 0 indicates no twiddle factors */
48 twid *td;
49 } P;
50
51
52 /* op counts of SPU codelets */
53 static const opcnt n_ops[33] = {
54 [2] = {2, 0, 0, 0},
55 [3] = {3, 1, 3, 0},
56 [4] = {6, 0, 2, 0},
57 [5] = {7, 2, 9, 0},
58 [6] = {12, 2, 6, 0},
59 [7] = {9, 3, 21, 0},
60 [8] = {16, 0, 10, 0},
61 [9] = {12, 4, 34, 0},
62 [10] = {24, 4, 18, 0},
63 [11] = {15, 5, 55, 0},
64 [12] = {30, 2, 18, 0},
65 [13] = {31, 6, 57, 0},
66 [14] = {32, 6, 42, 0},
67 [15] = {36, 7, 42, 0},
68 [16] = {38, 0, 34, 0},
69 [32] = {88, 0, 98, 0},
70 };
71
72 static const opcnt t_ops[33] = {
73 [2] = {3, 2, 0, 0},
74 [3] = {5, 5, 3, 0},
75 [4] = {9, 6, 2, 0},
76 [5] = {11, 10, 9, 0},
77 [6] = {17, 12, 6, 0},
78 [7] = {15, 15, 21, 0},
79 [8] = {23, 14, 10, 0},
80 [9] = {20, 20, 34, 0},
81 [10] = {33, 22, 18, 0},
82 [12] = {41, 24, 18, 0},
83 [15] = {50, 35, 42, 0},
84 [16] = {53, 30, 34, 0},
85 [32] = {119, 62, 98, 0},
86 };
87
88 static void compute_opcnt(const struct spu_radices *p,
89 INT n, INT v, opcnt *ops)
90 {
91 INT r;
92 signed char *q;
93
94 X(ops_zero)(ops);
95
96 for (q = p->r; (r = *q) > 0; ++q)
97 X(ops_madd2)(v * (n / r) / VL, &t_ops[r], ops);
98
99 X(ops_madd2)(v * (n / (-r)) / VL, &n_ops[-r], ops);
100 }
101
102 static INT extent(struct cell_iodim *d)
103 {
104 return d->n1 - d->n0;
105 }
106
107 /* FIXME: this is totally broken */
108 static void cost_model(const P *pln, opcnt *ops)
109 {
110 INT r = pln->n;
111 INT v0 = extent(pln->v + 0);
112 INT v1 = extent(pln->v + 1);
113
114 compute_opcnt(&pln->radices, r, v0 * v1, ops);
115
116 /* penalize cuts across short dimensions */
117 if (extent(pln->v + pln->cutdim) < extent(pln->v + 1 - pln->cutdim))
118 ops->other += 3.14159;
119 }
120
121 /* expressed in real numbers */
122 static INT compute_twiddle_size(const struct spu_radices *p, INT n)
123 {
124 INT sz = 0;
125 INT r;
126 signed char *q;
127
128 for (q = p->r; (r = *q) > 0; ++q) {
129 n /= r;
130 sz += 2 * (r - 1) * n;
131 }
132
133 return sz;
134 }
135
136 /* FIXME: find a way to use the normal FFTW twiddle mechanisms for this */
137 static void fill_twiddles(enum wakefulness wakefulness,
138 R *W, const signed char *q, INT n)
139 {
140 INT r;
141
142 for ( ; (r = *q) > 0; ++q) {
143 triggen *t = X(mktriggen)(wakefulness, n);
144 INT i, j, v, m = n / r;
145
146 for (j = 0; j < m; j += VL) {
147 for (i = 1; i < r; ++i) {
148 for (v = 0; v < VL; ++v) {
149 t->cexp(t, i * (j + v), W);
150 W += 2;
151 }
152 }
153 }
154 X(triggen_destroy)(t);
155 n = m;
156 }
157 }
158
159 static R *make_twiddles(enum wakefulness wakefulness,
160 const struct spu_radices *p, INT n, int *Wsz)
161 {
162 INT sz = compute_twiddle_size(p, n);
163 R *W = X(cell_aligned_malloc)(sz * sizeof(R));
164 A(FITS_IN_INT(sz));
165 *Wsz = sz;
166 fill_twiddles(wakefulness, W, p->r, n);
167 return W;
168 }
169
170 static int fits_in_local_store(INT n, INT v)
171 {
172 /* the SPU has space for 3 * MAX_N complex numbers. We need
173 n*(v+1) for data plus n for twiddle factors. */
174 return n * (v+2) <= 3 * MAX_N;
175 }
176
177 static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io)
178 {
179 const P *ego = (const P *) ego_;
180 R *xi, *xo;
181 int i, v;
182 int nspe = X(cell_nspe)();
183 int cutdim = ego->cutdim;
184 int contiguous_r = ((ego->is == 2) && (ego->os == 2));
185
186 /* find pointer to beginning of data, depending on sign */
187 if (ego->sign == FFT_SIGN) {
188 xi = ri; xo = ro;
189 } else {
190 xi = ii; xo = io;
191 }
192
193 /* fill contexts */
194 v = ego->v[cutdim].n1;
195
196 for (i = 0; i < nspe; ++i) {
197 int chunk;
198 struct spu_context *ctx = X(cell_get_ctx)(i);
199 struct dft_context *dft = &ctx->u.dft;
200
201 ctx->op = FFTW_SPE_DFT;
202
203 dft->r = ego->radices;
204 dft->n = ego->n;
205 dft->is_bytes = ego->is * sizeof(R);
206 dft->os_bytes = ego->os * sizeof(R);
207 dft->v[0] = ego->v[0];
208 dft->v[1] = ego->v[1];
209 dft->sign = ego->sign;
210 A(FITS_IN_INT(ego->Wsz * sizeof(R)));
211 dft->Wsz_bytes = ego->Wsz * sizeof(R);
212 dft->W = (uintptr_t)ego->W;
213 dft->xi = (uintptr_t)xi;
214 dft->xo = (uintptr_t)xo;
215
216 /* partition v into pieces of equal size, subject to alignment
217 constraints */
218 if (cutdim == 0 && !contiguous_r) {
219 /* CUTDIM = 0 and the SPU uses transposed DMA.
220 We must preserve the alignment of the dimension 0 in the
221 cut */
222 chunk = VL * ((v - ego->v[cutdim].n0) / (VL * (nspe - i)));
223 } else {
224 chunk = (v - ego->v[cutdim].n0) / (nspe - i);
225 }
226
227 dft->v[cutdim].n1 = v;
228 v -= chunk;
229 dft->v[cutdim].n0 = v;
230
231 /* optional dftw twiddles */
232 if (ego->rw)
233 dft->Ww = (uintptr_t)ego->td->W;
234 }
235
236 A(v == ego->v[cutdim].n0);
237
238 /* activate spe's */
239 X(cell_spe_awake_all)();
240
241 /* wait for completion */
242 X(cell_spe_wait_all)();
243 }
244
245 static void print(const plan *ego_, printer *p)
246 {
247 const P *ego = (const P *) ego_;
248 int i;
249 p->print(p, "(dft-direct-cell-%D/%d", ego->n, ego->cutdim);
250 for (i = 0; i < 2; ++i)
251 p->print(p, "%v", (INT)ego->v[i].n1);
252 p->print(p, ")");
253 }
254
255 static void awake(plan *ego_, enum wakefulness wakefulness)
256 {
257 P *ego = (P *) ego_;
258
259 /* awake the optional dftw twiddles */
260 if (ego->rw) {
261 static const tw_instr tw[] = {
262 { TW_CEXP, 0, 0 },
263 { TW_FULL, 0, 0 },
264 { TW_NEXT, 1, 0 }
265 };
266 X(twiddle_awake)(wakefulness, &ego->td, tw,
267 ego->rw * ego->mw, ego->rw, ego->mw);
268 }
269
270 /* awake the twiddles for the dft part */
271 switch (wakefulness) {
272 case SLEEPY:
273 free(ego->W);
274 ego->W = 0;
275 break;
276 default:
277 ego->W = make_twiddles(wakefulness, &ego->radices,
278 ego->n, &ego->Wsz);
279 break;
280 }
281 }
282
283 static int contiguous_or_aligned_p(INT s_bytes)
284 {
285 return (s_bytes == 2 * sizeof(R)) || ((s_bytes % ALIGNMENTA) == 0);
286 }
287
288 static int build_vdim(int inplacep,
289 INT r, INT irs, INT ors,
290 INT m, INT ims, INT oms, int dm,
291 INT v, INT ivs, INT ovs,
292 struct cell_iodim vd[2], int cutdim)
293 {
294 int vm, vv;
295 int contiguous_r = ((irs == 2) && (ors == 2));
296
297 /* 32-bit overflow? */
298 if (!(1
299 && FITS_IN_INT(r)
300 && FITS_IN_INT(irs * sizeof(R))
301 && FITS_IN_INT(ors * sizeof(R))
302 && FITS_IN_INT(m)
303 && FITS_IN_INT(ims * sizeof(R))
304 && FITS_IN_INT(oms * sizeof(R))
305 && FITS_IN_INT(v)
306 && FITS_IN_INT(ivs * sizeof(R))
307 && FITS_IN_INT(ovs * sizeof(R))))
308 return 0;
309
310 /* R dimension must be aligned in all cases */
311 if (!(1
312 && r % VL == 0 /* REDUNDANT */
313 && contiguous_or_aligned_p(irs * sizeof(R))
314 && contiguous_or_aligned_p(ors * sizeof(R))))
315 return 0;
316
317 if ((irs == 2 || ims == 2) && (ors == 2 || oms == 2)) {
318 /* Case 1: in SPU, let N=R, V0=M, V1=V */
319 vm = 0;
320 vv = 1;
321 } else if ((irs == 2 || ivs == 2) && (ors == 2 || ovs == 2)) {
322 /* Case 2: in SPU, let N=R, V0=V, V1=M */
323 vm = 1;
324 vv = 0;
325 } else {
326 /* can't do it */
327 return 0;
328 }
329
330 vd[vm].n0 = 0; vd[vm].n1 = m;
331 vd[vm].is_bytes = ims * sizeof(R); vd[vm].os_bytes = oms * sizeof(R);
332 vd[vm].dm = dm;
333
334 vd[vv].n0 = 0; vd[vv].n1 = v;
335 vd[vv].is_bytes = ivs * sizeof(R); vd[vv].os_bytes = ovs * sizeof(R);
336 vd[vv].dm = 0;
337
338 /* Restrictions on the size of the SPU local store: */
339 if (!(0
340 /* for contiguous I/O, one array of size R must fit into
341 local store. (The fits_in_local_store() check is
342 redundant because R <= MAX_N holds, but we check anyway
343 for clarity */
344 || (contiguous_r && fits_in_local_store(r, 1))
345
346 /* for noncontiguous I/O, VL arrays of size R must fit into
347 local store because of transposed DMA */
348 || fits_in_local_store(r, VL)))
349 return 0;
350
351 /* SPU DMA restrictions: */
352 if (!(1
353 /* If R is noncontiguous, then the SPU uses transposed DMA
354 and therefore dimension 0 must be aligned */
355 && (contiguous_r || vd[0].n1 % VL == 0)
356
357 /* dimension 1 is arbitrary */
358
359 /* dimension-0 strides must be either contiguous or aligned */
360 && contiguous_or_aligned_p((INT)vd[0].is_bytes)
361 && contiguous_or_aligned_p((INT)vd[0].os_bytes)
362
363 /* dimension-1 strides must be aligned */
364 && ((vd[1].is_bytes % ALIGNMENTA) == 0)
365 && ((vd[1].os_bytes % ALIGNMENTA) == 0)
366 ))
367 return 0;
368
369 /* see if we can do it without overwriting the input with itself */
370 if (!(0
371 /* can operate out-of-place */
372 || !inplacep
373
374 /* all strides are in-place */
375 || (1
376 && irs == ors
377 && ims == oms
378 && ivs == ovs)
379
380 /* we cut across in-place dimension 1, and dimension 0 fits
381 into local store */
382 || (1
383 && cutdim == 1
384 && vd[cutdim].is_bytes == vd[cutdim].os_bytes
385 && fits_in_local_store(r, extent(vd + 0)))
386 ))
387 return 0;
388
389 return 1;
390 }
391
392 static
393 const struct spu_radices *find_radices(R *ri, R *ii, R *ro, R *io,
394 INT n, int *sign)
395 {
396 const struct spu_radices *p;
397 R *xi, *xo;
398
399 /* 32-bit overflow? */
400 if (!FITS_IN_INT(n))
401 return 0;
402
403 /* valid n? */
404 if (n <= 0 || n > MAX_N || ((n % REQUIRE_N_MULTIPLE_OF) != 0))
405 return 0;
406
407 /* see if we have a plan for this N */
408 p = X(spu_radices) + n / REQUIRE_N_MULTIPLE_OF;
409 if (!p->r[0])
410 return 0;
411
412 /* check whether the data format is supported */
413 if (ii == ri + 1 && io == ro + 1) { /* R I R I ... format */
414 *sign = FFT_SIGN;
415 xi = ri; xo = ro;
416 } else if (ri == ii + 1 && ro == io + 1) { /* I R I R ... format */
417 *sign = -FFT_SIGN;
418 xi = ii; xo = io;
419 } else
420 return 0; /* can't do it */
421
422 if (!ALIGNEDA(xi) || !ALIGNEDA(xo))
423 return 0;
424
425 return p;
426 }
427
428 static const plan_adt padt = {
429 X(dft_solve), awake, print, X(plan_null_destroy)
430 };
431
432 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
433 {
434 P *pln;
435 const S *ego = (const S *)ego_;
436 const problem_dft *p = (const problem_dft *) p_;
437 int sign;
438 const struct spu_radices *radices;
439 struct cell_iodim vd[2];
440 INT m, ims, oms, v, ivs, ovs;
441
442 /* basic conditions */
443 if (!(1
444 && X(cell_nspe)() > 0
445 && p->sz->rnk == 1
446 && p->vecsz->rnk <= 2
447 && !NO_SIMDP(plnr)
448 ))
449 return 0;
450
451 /* see if SPU supports N */
452 {
453 iodim *d = p->sz->dims;
454 radices = find_radices(p->ri, p->ii, p->ro, p->io, d[0].n, &sign);
455 if (!radices)
456 return 0;
457 }
458
459 /* canonicalize to vrank 2 */
460 if (p->vecsz->rnk >= 1) {
461 iodim *d = p->vecsz->dims + 0;
462 m = d->n; ims = d->is; oms = d->os;
463 } else {
464 m = 1; ims = oms = 0;
465 }
466
467 if (p->vecsz->rnk >= 2) {
468 iodim *d = p->vecsz->dims + 1;
469 v = d->n; ivs = d->is; ovs = d->os;
470 } else {
471 v = 1; ivs = ovs = 0;
472 }
473
474 /* see if strides are supported by the SPU DMA routine */
475 {
476 iodim *d = p->sz->dims + 0;
477 if (!build_vdim(p->ri == p->ro,
478 d->n, d->is, d->os,
479 m, ims, oms, 0,
480 v, ivs, ovs,
481 vd, ego->cutdim))
482 return 0;
483 }
484
485 pln = MKPLAN_DFT(P, &padt, apply);
486
487 pln->radices = *radices;
488 {
489 iodim *d = p->sz->dims + 0;
490 pln->n = d[0].n;
491 pln->is = d[0].is;
492 pln->os = d[0].os;
493 }
494 pln->sign = sign;
495 pln->v[0] = vd[0];
496 pln->v[1] = vd[1];
497 pln->cutdim = ego->cutdim;
498 pln->W = 0;
499
500 pln->rw = 0;
501
502 cost_model(pln, &pln->super.super.ops);
503
504 return &(pln->super.super);
505 }
506
507 static void solver_destroy(solver *ego)
508 {
509 UNUSED(ego);
510 X(cell_deactivate_spes)();
511 }
512
513 static solver *mksolver(int cutdim)
514 {
515 static const solver_adt sadt = { PROBLEM_DFT, mkplan, solver_destroy };
516 S *slv = MKSOLVER(S, &sadt);
517 slv->cutdim = cutdim;
518 X(cell_activate_spes)();
519 return &(slv->super);
520 }
521
522 void X(dft_direct_cell_register)(planner *p)
523 {
524 REGISTER_SOLVER(p, mksolver(0));
525 REGISTER_SOLVER(p, mksolver(1));
526 }
527
528 /**************************************************************/
529 /* solvers with twiddle factors: */
530
531 typedef struct {
532 plan_dftw super;
533 plan *cld;
534 } Pw;
535
536 typedef struct {
537 ct_solver super;
538 int cutdim;
539 } Sw;
540
541 static void destroyw(plan *ego_)
542 {
543 Pw *ego = (Pw *) ego_;
544 X(plan_destroy_internal)(ego->cld);
545 }
546
547 static void printw(const plan *ego_, printer *p)
548 {
549 const Pw *ego = (const Pw *) ego_;
550 const P *cld = (const P *) ego->cld;
551 p->print(p, "(dftw-direct-cell-%D-%D%v%(%p%))",
552 cld->rw, cld->mw, cld->v[1].n1,
553 ego->cld);
554 }
555
556 static void awakew(plan *ego_, enum wakefulness wakefulness)
557 {
558 Pw *ego = (Pw *) ego_;
559 X(plan_awake)(ego->cld, wakefulness);
560 }
561
562 static void applyw(const plan *ego_, R *rio, R *iio)
563 {
564 const Pw *ego = (const Pw *) ego_;
565 dftapply cldapply = ((plan_dft *) ego->cld)->apply;
566 cldapply(ego->cld, rio, iio, rio, iio);
567 }
568
569 static plan *mkcldw(const ct_solver *ego_,
570 INT r, INT irs, INT ors,
571 INT m, INT ms,
572 INT v, INT ivs, INT ovs,
573 INT mstart, INT mcount,
574 R *rio, R *iio,
575 planner *plnr)
576 {
577 const Sw *ego = (const Sw *)ego_;
578 const struct spu_radices *radices;
579 int sign;
580 Pw *pln;
581 P *cld;
582 struct cell_iodim vd[2];
583 int dm = 0;
584
585 static const plan_adt padtw = {
586 0, awakew, printw, destroyw
587 };
588
589 /* use only if cell is enabled */
590 if (NO_SIMDP(plnr) || X(cell_nspe)() <= 0)
591 return 0;
592
593 /* no way in hell this SPU stuff is going to work with pthreads */
594 if (mstart != 0 || mcount != m)
595 return 0;
596
597 /* don't bother for small N */
598 if (r * m * v <= MAX_N / 16 /* ARBITRARY */)
599 return 0;
600
601 /* check whether the R dimension is supported */
602 radices = find_radices(rio, iio, rio, iio, r, &sign);
603
604 if (!radices)
605 return 0;
606
607 /* encode decimation in DM */
608 switch (ego->super.dec) {
609 case DECDIT:
610 case DECDIT+TRANSPOSE:
611 dm = 1;
612 break;
613 case DECDIF:
614 case DECDIF+TRANSPOSE:
615 dm = -1;
616 break;
617 }
618
619 if (!build_vdim(1,
620 r, irs, ors,
621 m, ms, ms, dm,
622 v, ivs, ovs,
623 vd, ego->cutdim))
624 return 0;
625
626 cld = MKPLAN_DFT(P, &padt, apply);
627
628 cld->radices = *radices;
629 cld->n = r;
630 cld->is = irs;
631 cld->os = ors;
632 cld->sign = sign;
633 cld->W = 0;
634
635 cld->rw = r; cld->mw = m; cld->td = 0;
636
637 cld->v[0] = vd[0];
638 cld->v[1] = vd[1];
639 cld->cutdim = ego->cutdim;
640
641 pln = MKPLAN_DFTW(Pw, &padtw, applyw);
642 pln->cld = &cld->super.super;
643
644 cost_model(cld, &pln->super.super.ops);
645
646 /* for twiddle factors: one mul and one fma per complex point */
647 pln->super.super.ops.fma += (r * m * v) / VL;
648 pln->super.super.ops.mul += (r * m * v) / VL;
649
650 /* FIXME: heuristics */
651 /* pay penalty for large radices: */
652 if (r > MAX_N / 16)
653 pln->super.super.ops.other += ((r - (MAX_N / 16)) * m * v);
654
655 return &(pln->super.super);
656 }
657
658 /* heuristic to enable vector recursion */
659 static int force_vrecur(const ct_solver *ego, const problem_dft *p)
660 {
661 iodim *d;
662 INT n, r, m;
663 INT cutoff = 128;
664
665 A(p->vecsz->rnk == 1);
666 A(p->sz->rnk == 1);
667
668 n = p->sz->dims[0].n;
669 r = X(choose_radix)(ego->r, n);
670 m = n / r;
671
672 d = p->vecsz->dims + 0;
673 return (1
674 /* some vector dimension is contiguous */
675 && (d->is == 2 || d->os == 2)
676
677 /* vector is sufficiently long */
678 && d->n >= cutoff
679
680 /* transform is sufficiently long */
681 && m >= cutoff
682 && r >= cutoff);
683 }
684
685 static void regsolverw(planner *plnr, INT r, int dec, int cutdim)
686 {
687 Sw *slv = (Sw *)X(mksolver_ct)(sizeof(Sw), r, dec, mkcldw, force_vrecur);
688 slv->cutdim = cutdim;
689 REGISTER_SOLVER(plnr, &(slv->super.super));
690 }
691
692 void X(ct_cell_direct_register)(planner *p)
693 {
694 INT n;
695
696 for (n = 0; n <= MAX_N; n += REQUIRE_N_MULTIPLE_OF) {
697 const struct spu_radices *r =
698 X(spu_radices) + n / REQUIRE_N_MULTIPLE_OF;
699 if (r->r[0]) {
700 regsolverw(p, n, DECDIT, 0);
701 regsolverw(p, n, DECDIT, 1);
702 regsolverw(p, n, DECDIF+TRANSPOSE, 0);
703 regsolverw(p, n, DECDIF+TRANSPOSE, 1);
704 }
705 }
706 }
707
708
709 #endif /* HAVE_CELL */
710
711