comparison Lib/fftw-3.2.1/doc/html/.svn/text-base/One_002dDimensional-DFTs-of-Real-Data.html.svn-base @ 0:25bf17994ef1

First commit. VS2013, Codeblocks and Mac OSX configuration
author Geogaddi\David <d.m.ronan@qmul.ac.uk>
date Thu, 09 Jul 2015 01:12:16 +0100
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:25bf17994ef1
1 <html lang="en">
2 <head>
3 <title>One-Dimensional DFTs of Real Data - FFTW 3.2.1</title>
4 <meta http-equiv="Content-Type" content="text/html">
5 <meta name="description" content="FFTW 3.2.1">
6 <meta name="generator" content="makeinfo 4.8">
7 <link title="Top" rel="start" href="index.html#Top">
8 <link rel="up" href="Tutorial.html#Tutorial" title="Tutorial">
9 <link rel="prev" href="Complex-Multi_002dDimensional-DFTs.html#Complex-Multi_002dDimensional-DFTs" title="Complex Multi-Dimensional DFTs">
10 <link rel="next" href="Multi_002dDimensional-DFTs-of-Real-Data.html#Multi_002dDimensional-DFTs-of-Real-Data" title="Multi-Dimensional DFTs of Real Data">
11 <link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
12 <!--
13 This manual is for FFTW
14 (version 3.2.1, 5 February 2009).
15
16 Copyright (C) 2003 Matteo Frigo.
17
18 Copyright (C) 2003 Massachusetts Institute of Technology.
19
20 Permission is granted to make and distribute verbatim copies of
21 this manual provided the copyright notice and this permission
22 notice are preserved on all copies.
23
24 Permission is granted to copy and distribute modified versions of
25 this manual under the conditions for verbatim copying, provided
26 that the entire resulting derived work is distributed under the
27 terms of a permission notice identical to this one.
28
29 Permission is granted to copy and distribute translations of this
30 manual into another language, under the above conditions for
31 modified versions, except that this permission notice may be
32 stated in a translation approved by the Free Software Foundation.
33 -->
34 <meta http-equiv="Content-Style-Type" content="text/css">
35 <style type="text/css"><!--
36 pre.display { font-family:inherit }
37 pre.format { font-family:inherit }
38 pre.smalldisplay { font-family:inherit; font-size:smaller }
39 pre.smallformat { font-family:inherit; font-size:smaller }
40 pre.smallexample { font-size:smaller }
41 pre.smalllisp { font-size:smaller }
42 span.sc { font-variant:small-caps }
43 span.roman { font-family:serif; font-weight:normal; }
44 span.sansserif { font-family:sans-serif; font-weight:normal; }
45 --></style>
46 </head>
47 <body>
48 <div class="node">
49 <p>
50 <a name="One-Dimensional-DFTs-of-Real-Data"></a>
51 <a name="One_002dDimensional-DFTs-of-Real-Data"></a>
52 Next:&nbsp;<a rel="next" accesskey="n" href="Multi_002dDimensional-DFTs-of-Real-Data.html#Multi_002dDimensional-DFTs-of-Real-Data">Multi-Dimensional DFTs of Real Data</a>,
53 Previous:&nbsp;<a rel="previous" accesskey="p" href="Complex-Multi_002dDimensional-DFTs.html#Complex-Multi_002dDimensional-DFTs">Complex Multi-Dimensional DFTs</a>,
54 Up:&nbsp;<a rel="up" accesskey="u" href="Tutorial.html#Tutorial">Tutorial</a>
55 <hr>
56 </div>
57
58 <h3 class="section">2.3 One-Dimensional DFTs of Real Data</h3>
59
60 <p>In many practical applications, the input data <code>in[i]</code> are purely
61 real numbers, in which case the DFT output satisfies the &ldquo;Hermitian&rdquo;
62 <a name="index-Hermitian-45"></a>redundancy: <code>out[i]</code> is the conjugate of <code>out[n-i]</code>. It is
63 possible to take advantage of these circumstances in order to achieve
64 roughly a factor of two improvement in both speed and memory usage.
65
66 <p>In exchange for these speed and space advantages, the user sacrifices
67 some of the simplicity of FFTW's complex transforms. First of all, the
68 input and output arrays are of <em>different sizes and types</em>: the
69 input is <code>n</code> real numbers, while the output is <code>n/2+1</code>
70 complex numbers (the non-redundant outputs); this also requires slight
71 &ldquo;padding&rdquo; of the input array for
72 <a name="index-padding-46"></a>in-place transforms. Second, the inverse transform (complex to real)
73 has the side-effect of <em>destroying its input array</em>, by default.
74 Neither of these inconveniences should pose a serious problem for
75 users, but it is important to be aware of them.
76
77 <p>The routines to perform real-data transforms are almost the same as
78 those for complex transforms: you allocate arrays of <code>double</code>
79 and/or <code>fftw_complex</code> (preferably using <code>fftw_malloc</code>),
80 create an <code>fftw_plan</code>, execute it as many times as you want with
81 <code>fftw_execute(plan)</code>, and clean up with
82 <code>fftw_destroy_plan(plan)</code> (and <code>fftw_free</code>). The only
83 differences are that the input (or output) is of type <code>double</code>
84 and there are new routines to create the plan. In one dimension:
85
86 <pre class="example"> fftw_plan fftw_plan_dft_r2c_1d(int n, double *in, fftw_complex *out,
87 unsigned flags);
88 fftw_plan fftw_plan_dft_c2r_1d(int n, fftw_complex *in, double *out,
89 unsigned flags);
90 </pre>
91 <p><a name="index-fftw_005fplan_005fdft_005fr2c_005f1d-47"></a><a name="index-fftw_005fplan_005fdft_005fc2r_005f1d-48"></a>
92 for the real input to complex-Hermitian output (<dfn>r2c</dfn>) and
93 complex-Hermitian input to real output (<dfn>c2r</dfn>) transforms.
94 <a name="index-r2c-49"></a><a name="index-c2r-50"></a>Unlike the complex DFT planner, there is no <code>sign</code> argument.
95 Instead, r2c DFTs are always <code>FFTW_FORWARD</code> and c2r DFTs are
96 always <code>FFTW_BACKWARD</code>.
97 <a name="index-FFTW_005fFORWARD-51"></a><a name="index-FFTW_005fBACKWARD-52"></a>(For single/long-double precision
98 <code>fftwf</code> and <code>fftwl</code>, <code>double</code> should be replaced by
99 <code>float</code> and <code>long double</code>, respectively.)
100 <a name="index-precision-53"></a>
101 Here, <code>n</code> is the &ldquo;logical&rdquo; size of the DFT, not necessarily the
102 physical size of the array. In particular, the real (<code>double</code>)
103 array has <code>n</code> elements, while the complex (<code>fftw_complex</code>)
104 array has <code>n/2+1</code> elements (where the division is rounded down).
105 For an in-place transform,
106 <a name="index-in_002dplace-54"></a><code>in</code> and <code>out</code> are aliased to the same array, which must be
107 big enough to hold both; so, the real array would actually have
108 <code>2*(n/2+1)</code> elements, where the elements beyond the first <code>n</code>
109 are unused padding. The kth element of the complex array is
110 exactly the same as the kth element of the corresponding complex
111 DFT. All positive <code>n</code> are supported; products of small factors are
112 most efficient, but an <i>O</i>(<i>n</i>&nbsp;log&nbsp;<i>n</i>) algorithm is used even for prime
113 sizes.
114
115 <p>As noted above, the c2r transform destroys its input array even for
116 out-of-place transforms. This can be prevented, if necessary, by
117 including <code>FFTW_PRESERVE_INPUT</code> in the <code>flags</code>, with
118 unfortunately some sacrifice in performance.
119 <a name="index-flags-55"></a><a name="index-FFTW_005fPRESERVE_005fINPUT-56"></a>This flag is also not currently supported for multi-dimensional real
120 DFTs (next section).
121
122 <p>Readers familiar with DFTs of real data will recall that the 0th (the
123 &ldquo;DC&rdquo;) and <code>n/2</code>-th (the &ldquo;Nyquist&rdquo; frequency, when <code>n</code> is
124 even) elements of the complex output are purely real. Some
125 implementations therefore store the Nyquist element where the DC
126 imaginary part would go, in order to make the input and output arrays
127 the same size. Such packing, however, does not generalize well to
128 multi-dimensional transforms, and the space savings are miniscule in
129 any case; FFTW does not support it.
130
131 <p>An alternative interface for one-dimensional r2c and c2r DFTs can be
132 found in the `<samp><span class="samp">r2r</span></samp>' interface (see <a href="The-Halfcomplex_002dformat-DFT.html#The-Halfcomplex_002dformat-DFT">The Halfcomplex-format DFT</a>), with &ldquo;halfcomplex&rdquo;-format output that <em>is</em> the same size
133 (and type) as the input array.
134 <a name="index-halfcomplex-format-57"></a>That interface, although it is not very useful for multi-dimensional
135 transforms, may sometimes yield better performance.
136
137 <!-- -->
138 </body></html>
139