annotate Lib/fftw-3.2.1/doc/html/Simple-MPI-example.html @ 7:c6f38cba266d

Cleaned up redundant code
author Geogaddi\David <d.m.ronan@qmul.ac.uk>
date Wed, 22 Jul 2015 15:14:58 +0100
parents 25bf17994ef1
children
rev   line source
d@0 1 <html lang="en">
d@0 2 <head>
d@0 3 <title>Simple MPI example - FFTW 3.2alpha3</title>
d@0 4 <meta http-equiv="Content-Type" content="text/html">
d@0 5 <meta name="description" content="FFTW 3.2alpha3">
d@0 6 <meta name="generator" content="makeinfo 4.8">
d@0 7 <link title="Top" rel="start" href="index.html#Top">
d@0 8 <link rel="up" href="Distributed_002dmemory-FFTW-with-MPI.html#Distributed_002dmemory-FFTW-with-MPI" title="Distributed-memory FFTW with MPI">
d@0 9 <link rel="prev" href="Linking-and-Initializing-MPI-FFTW.html#Linking-and-Initializing-MPI-FFTW" title="Linking and Initializing MPI FFTW">
d@0 10 <link rel="next" href="MPI-data-distribution.html#MPI-data-distribution" title="MPI data distribution">
d@0 11 <link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
d@0 12 <!--
d@0 13 This manual is for FFTW
d@0 14 (version 3.2alpha3, 14 August 2007).
d@0 15
d@0 16 Copyright (C) 2003 Matteo Frigo.
d@0 17
d@0 18 Copyright (C) 2003 Massachusetts Institute of Technology.
d@0 19
d@0 20 Permission is granted to make and distribute verbatim copies of
d@0 21 this manual provided the copyright notice and this permission
d@0 22 notice are preserved on all copies.
d@0 23
d@0 24 Permission is granted to copy and distribute modified versions of
d@0 25 this manual under the conditions for verbatim copying, provided
d@0 26 that the entire resulting derived work is distributed under the
d@0 27 terms of a permission notice identical to this one.
d@0 28
d@0 29 Permission is granted to copy and distribute translations of this
d@0 30 manual into another language, under the above conditions for
d@0 31 modified versions, except that this permission notice may be
d@0 32 stated in a translation approved by the Free Software Foundation.
d@0 33 -->
d@0 34 <meta http-equiv="Content-Style-Type" content="text/css">
d@0 35 <style type="text/css"><!--
d@0 36 pre.display { font-family:inherit }
d@0 37 pre.format { font-family:inherit }
d@0 38 pre.smalldisplay { font-family:inherit; font-size:smaller }
d@0 39 pre.smallformat { font-family:inherit; font-size:smaller }
d@0 40 pre.smallexample { font-size:smaller }
d@0 41 pre.smalllisp { font-size:smaller }
d@0 42 span.sc { font-variant:small-caps }
d@0 43 span.roman { font-family:serif; font-weight:normal; }
d@0 44 span.sansserif { font-family:sans-serif; font-weight:normal; }
d@0 45 --></style>
d@0 46 </head>
d@0 47 <body>
d@0 48 <div class="node">
d@0 49 <p>
d@0 50 <a name="Simple-MPI-example"></a>
d@0 51 Next:&nbsp;<a rel="next" accesskey="n" href="MPI-data-distribution.html#MPI-data-distribution">MPI data distribution</a>,
d@0 52 Previous:&nbsp;<a rel="previous" accesskey="p" href="Linking-and-Initializing-MPI-FFTW.html#Linking-and-Initializing-MPI-FFTW">Linking and Initializing MPI FFTW</a>,
d@0 53 Up:&nbsp;<a rel="up" accesskey="u" href="Distributed_002dmemory-FFTW-with-MPI.html#Distributed_002dmemory-FFTW-with-MPI">Distributed-memory FFTW with MPI</a>
d@0 54 <hr>
d@0 55 </div>
d@0 56
d@0 57 <h3 class="section">6.3 Simple MPI example</h3>
d@0 58
d@0 59 <p>Before we document the FFTW MPI interface in detail, we begin with a
d@0 60 simple example outlining how one would perform a two-dimensional
d@0 61 <code>N0</code> by <code>N1</code> complex DFT.
d@0 62
d@0 63 <pre class="example"> #include &lt;fftw3-mpi.h&gt;
d@0 64
d@0 65 int main(int argc, char **argv)
d@0 66 {
d@0 67 const ptrdiff_t N0 = ..., N1 = ...;
d@0 68 fftw_plan plan;
d@0 69 fftw_complex *data;
d@0 70 ptrdiff_t alloc_local, local_n0, local_0_start, i, j;
d@0 71
d@0 72 MPI_Init(&amp;argc, &amp;argv);
d@0 73 fftw_mpi_init();
d@0 74
d@0 75 /* <span class="roman">get local data size and allocate</span> */
d@0 76 alloc_local = fftw3_mpi_local_size_2d(N0, N1, MPI_COMM_WORLD,
d@0 77 &amp;local_n0, &amp;local_0_start);
d@0 78 data = (fftw_complex *) fftw_malloc(sizeof(fftw_complex) * alloc_local);
d@0 79
d@0 80 /* <span class="roman">create plan for forward DFT</span> */
d@0 81 plan = fftw_mpi_plan_dft_2d(N0, N1, data, data, MPI_COMM_WORLD,
d@0 82 FFTW_FORWARD, FFTW_ESTIMATE);
d@0 83
d@0 84 /* <span class="roman">initialize data to some function</span> my_function(x,y) */
d@0 85 for (i = 0; i &lt; local_n0; ++i) for (j = 0; j &lt; N1; ++j)
d@0 86 data[i*N1 + j] = my_function(local_0_start + i, j);
d@0 87
d@0 88 /* <span class="roman">compute transforms, in-place, as many times as desired</span> */
d@0 89 fftw_execute(plan);
d@0 90
d@0 91 fftw_destroy_plan(plan);
d@0 92
d@0 93 MPI_Finalize();
d@0 94 }
d@0 95 </pre>
d@0 96 <p>As can be seen above, the MPI interface follows the same basic style
d@0 97 of allocate/plan/execute/destroy as the serial FFTW routines. All of
d@0 98 the MPI-specific routines are prefixed with `<samp><span class="samp">fftw_mpi_</span></samp>' instead
d@0 99 of `<samp><span class="samp">fftw_</span></samp>'. There are a few important differences, however:
d@0 100
d@0 101 <p>First, we must call <code>fftw_mpi_init()</code> after calling
d@0 102 <code>MPI_Init</code> (required in all MPI programs) and before calling any
d@0 103 other `<samp><span class="samp">fftw_mpi_</span></samp>' routine.
d@0 104 <a name="index-MPI_005fInit-340"></a><a name="index-fftw_005fmpi_005finit-341"></a>
d@0 105 Second, when we create the plan with <code>fftw_mpi_plan_dft_2d</code>,
d@0 106 analogous to <code>fftw_plan_dft_2d</code>, we pass an additional argument:
d@0 107 the communicator, indicating which processes will participate in the
d@0 108 transform (here <code>MPI_COMM_WORLD</code>, indicating all processes).
d@0 109 Whenever you create, execute, or destroy a plan for an MPI transform,
d@0 110 you must call the corresponding FFTW routine on <em>all</em> processes
d@0 111 in the communicator for that transform. (That is, these are
d@0 112 <em>collective</em> calls.) Note that the plan for the MPI transform
d@0 113 uses the standard <code>fftw_execute</code> and <code>fftw_destroy</code>
d@0 114 routines (the new-array execute routines also work).
d@0 115 <a name="index-collective-function-342"></a><a name="index-fftw_005fmpi_005fplan_005fdft_005f2d-343"></a><a name="index-MPI_005fCOMM_005fWORLD-344"></a>
d@0 116 Third, all of the FFTW MPI routines take <code>ptrdiff_t</code> arguments
d@0 117 instead of <code>int</code> as for the serial FFTW. <code>ptrdiff_t</code> is a
d@0 118 standard C integer type which is (at least) 32 bits wide on a 32-bit
d@0 119 machine and 64 bits wide on a 64-bit machine. This is to make it easy
d@0 120 to specify very large parallel transforms on a 64-bit machine. (You
d@0 121 can specify 64-bit transform sizes in the serial FFTW, too, but only
d@0 122 by using the `<samp><span class="samp">guru64</span></samp>' planner interface. See <a href="64_002dbit-Guru-Interface.html#g_t64_002dbit-Guru-Interface">64-bit Guru Interface</a>.)
d@0 123 <a name="index-ptrdiff_005ft-345"></a><a name="index-g_t64_002dbit-architecture-346"></a>
d@0 124 Fourth, and most importantly, you don't allocate the entire
d@0 125 two-dimensional array on each process. Instead, you call
d@0 126 <code>fftw_mpi_local_size_2d</code> to find out what <code>portion</code> of the
d@0 127 array resides on each processor, and how much space to allocate.
d@0 128 Here, the portion of the array on each process is a <code>local_n0</code> by
d@0 129 <code>N1</code> slice of the total array, starting at index
d@0 130 <code>local_0_start</code>. The total number of <code>fftw_complex</code> numbers
d@0 131 to allocate is given by the <code>alloc_local</code> return value, which
d@0 132 <em>may</em> be greater than <code>local_n0 * N1</code> (in case some
d@0 133 intermediate calculations require additional storage). The data
d@0 134 distribution in FFTW's MPI interface is described in more detail by
d@0 135 the next section.
d@0 136 <a name="index-fftw_005fmpi_005flocal_005fsize_005f2d-347"></a><a name="index-data-distribution-348"></a>
d@0 137 Given the portion of the array that resides on the local process, it
d@0 138 is straightforward to initialize the data (here to a function
d@0 139 <code>myfunction</code>) and otherwise manipulate it. Of course, at the end
d@0 140 of the program you may want to output the data somehow, but
d@0 141 synchronizing this output is up to you and is beyond the scope of this
d@0 142 manual. (One good way to output a large multi-dimensional distributed
d@0 143 array in MPI to a portable binary file is to use the free HDF5
d@0 144 library; see the <a href="http://www.hdfgroup.org/">HDF home page</a>.)
d@0 145 <a name="index-HDF5-349"></a>
d@0 146 <!-- -->
d@0 147
d@0 148 </body></html>
d@0 149