d@0
|
1 /*
|
d@0
|
2 * Copyright (c) 2003, 2007-8 Matteo Frigo
|
d@0
|
3 * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology
|
d@0
|
4 *
|
d@0
|
5 * This program is free software; you can redistribute it and/or modify
|
d@0
|
6 * it under the terms of the GNU General Public License as published by
|
d@0
|
7 * the Free Software Foundation; either version 2 of the License, or
|
d@0
|
8 * (at your option) any later version.
|
d@0
|
9 *
|
d@0
|
10 * This program is distributed in the hope that it will be useful,
|
d@0
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
d@0
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
d@0
|
13 * GNU General Public License for more details.
|
d@0
|
14 *
|
d@0
|
15 * You should have received a copy of the GNU General Public License
|
d@0
|
16 * along with this program; if not, write to the Free Software
|
d@0
|
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
d@0
|
18 *
|
d@0
|
19 */
|
d@0
|
20 /* Generated by: ../../genfft/gen_twiddle_c -standalone -fma -reorder-insns -simd -compact -variables 100000 -include fftw-spu.h -trivial-stores -n 16 -name X(spu_t1fv_16) */
|
d@0
|
21
|
d@0
|
22 /*
|
d@0
|
23 * This function contains 87 FP additions, 64 FP multiplications,
|
d@0
|
24 * (or, 53 additions, 30 multiplications, 34 fused multiply/add),
|
d@0
|
25 * 108 stack variables, 3 constants, and 32 memory accesses
|
d@0
|
26 */
|
d@0
|
27 #include "fftw-spu.h"
|
d@0
|
28
|
d@0
|
29 void X(spu_t1fv_16) (R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) {
|
d@0
|
30 DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
|
d@0
|
31 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
|
d@0
|
32 DVK(KP414213562, +0.414213562373095048801688724209698078569671875);
|
d@0
|
33 INT m;
|
d@0
|
34 R *x;
|
d@0
|
35 x = ri;
|
d@0
|
36 for (m = mb, W = W + (mb * ((TWVL / VL) * 30)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 30), MAKE_VOLATILE_STRIDE(rs)) {
|
d@0
|
37 V T14, T1h, Ta, TS, TJ, TT, T17, T1i, Tl, TV, T1b, T1k, Tw, TW, T1e;
|
d@0
|
38 V T1l, T1, T8, T3, T6, T7, T2, T5, T4, T9, TA, TH, TC, TF, Tz;
|
d@0
|
39 V TG, TB, TE, T16, T15, TD, TI, Tc, Tj, Te, Th, Tb, Ti, Td, Tg;
|
d@0
|
40 V T19, T1a, Tf, Tk, Tn, Tu, Tp, Ts, Tm, Tt, To, Tr, T1c, T1d, Tq;
|
d@0
|
41 V Tv, T10, T11, TY, TZ, TU, TX, T12, T13, TO, Ty, TL, TP, TK, Tx;
|
d@0
|
42 V TN, TQ, TM, TR, T1u, T1y, T1x, T1v, T1g, T1q, T1n, T1r, T18, T1f, T1j;
|
d@0
|
43 V T1m, T1p, T1s, T1o, T1t, T1w, T1C, T1z, T1D, T1B, T1E, T1A, T1F;
|
d@0
|
44 T1 = LD(&(x[0]), ms, &(x[0]));
|
d@0
|
45 T7 = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
|
d@0
|
46 T8 = BYTWJ(&(W[TWVL * 22]), T7);
|
d@0
|
47 T2 = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
|
d@0
|
48 T3 = BYTWJ(&(W[TWVL * 14]), T2);
|
d@0
|
49 T5 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
d@0
|
50 T6 = BYTWJ(&(W[TWVL * 6]), T5);
|
d@0
|
51 T14 = VSUB(T1, T3);
|
d@0
|
52 T4 = VADD(T1, T3);
|
d@0
|
53 T9 = VADD(T6, T8);
|
d@0
|
54 T1h = VSUB(T6, T8);
|
d@0
|
55 Ta = VSUB(T4, T9);
|
d@0
|
56 TS = VADD(T4, T9);
|
d@0
|
57 Tz = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
|
d@0
|
58 TA = BYTWJ(&(W[TWVL * 26]), Tz);
|
d@0
|
59 TG = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
|
d@0
|
60 TH = BYTWJ(&(W[TWVL * 18]), TG);
|
d@0
|
61 TB = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
d@0
|
62 TC = BYTWJ(&(W[TWVL * 10]), TB);
|
d@0
|
63 TE = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
d@0
|
64 TF = BYTWJ(&(W[TWVL * 2]), TE);
|
d@0
|
65 TD = VADD(TA, TC);
|
d@0
|
66 T16 = VSUB(TA, TC);
|
d@0
|
67 T15 = VSUB(TF, TH);
|
d@0
|
68 TI = VADD(TF, TH);
|
d@0
|
69 TJ = VSUB(TD, TI);
|
d@0
|
70 TT = VADD(TI, TD);
|
d@0
|
71 T17 = VADD(T15, T16);
|
d@0
|
72 T1i = VSUB(T16, T15);
|
d@0
|
73 Tb = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
d@0
|
74 Tc = BYTWJ(&(W[0]), Tb);
|
d@0
|
75 Ti = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
|
d@0
|
76 Tj = BYTWJ(&(W[TWVL * 24]), Ti);
|
d@0
|
77 Td = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
|
d@0
|
78 Te = BYTWJ(&(W[TWVL * 16]), Td);
|
d@0
|
79 Tg = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
d@0
|
80 Th = BYTWJ(&(W[TWVL * 8]), Tg);
|
d@0
|
81 Tf = VADD(Tc, Te);
|
d@0
|
82 T19 = VSUB(Tc, Te);
|
d@0
|
83 T1a = VSUB(Th, Tj);
|
d@0
|
84 Tk = VADD(Th, Tj);
|
d@0
|
85 Tl = VSUB(Tf, Tk);
|
d@0
|
86 TV = VADD(Tf, Tk);
|
d@0
|
87 T1b = VFNMS(LDK(KP414213562), T1a, T19);
|
d@0
|
88 T1k = VFMA(LDK(KP414213562), T19, T1a);
|
d@0
|
89 Tm = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)]));
|
d@0
|
90 Tn = BYTWJ(&(W[TWVL * 28]), Tm);
|
d@0
|
91 Tt = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
|
d@0
|
92 Tu = BYTWJ(&(W[TWVL * 20]), Tt);
|
d@0
|
93 To = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
d@0
|
94 Tp = BYTWJ(&(W[TWVL * 12]), To);
|
d@0
|
95 Tr = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
d@0
|
96 Ts = BYTWJ(&(W[TWVL * 4]), Tr);
|
d@0
|
97 Tq = VADD(Tn, Tp);
|
d@0
|
98 T1c = VSUB(Tn, Tp);
|
d@0
|
99 T1d = VSUB(Tu, Ts);
|
d@0
|
100 Tv = VADD(Ts, Tu);
|
d@0
|
101 Tw = VSUB(Tq, Tv);
|
d@0
|
102 TW = VADD(Tq, Tv);
|
d@0
|
103 T1e = VFNMS(LDK(KP414213562), T1d, T1c);
|
d@0
|
104 T1l = VFMA(LDK(KP414213562), T1c, T1d);
|
d@0
|
105 TU = VADD(TS, TT);
|
d@0
|
106 T10 = VSUB(TS, TT);
|
d@0
|
107 T11 = VSUB(TW, TV);
|
d@0
|
108 TX = VADD(TV, TW);
|
d@0
|
109 TY = VSUB(TU, TX);
|
d@0
|
110 TZ = VADD(TU, TX);
|
d@0
|
111 ST(&(x[WS(rs, 8)]), TY, ms, &(x[0]));
|
d@0
|
112 ST(&(x[0]), TZ, ms, &(x[0]));
|
d@0
|
113 T12 = VFNMSI(T11, T10);
|
d@0
|
114 T13 = VFMAI(T11, T10);
|
d@0
|
115 ST(&(x[WS(rs, 12)]), T12, ms, &(x[0]));
|
d@0
|
116 ST(&(x[WS(rs, 4)]), T13, ms, &(x[0]));
|
d@0
|
117 Tx = VADD(Tl, Tw);
|
d@0
|
118 TK = VSUB(Tw, Tl);
|
d@0
|
119 TO = VFMA(LDK(KP707106781), Tx, Ta);
|
d@0
|
120 Ty = VFNMS(LDK(KP707106781), Tx, Ta);
|
d@0
|
121 TL = VFNMS(LDK(KP707106781), TK, TJ);
|
d@0
|
122 TP = VFMA(LDK(KP707106781), TK, TJ);
|
d@0
|
123 TM = VFNMSI(TL, Ty);
|
d@0
|
124 TN = VFMAI(TL, Ty);
|
d@0
|
125 ST(&(x[WS(rs, 6)]), TM, ms, &(x[0]));
|
d@0
|
126 TR = VFMAI(TP, TO);
|
d@0
|
127 TQ = VFNMSI(TP, TO);
|
d@0
|
128 ST(&(x[WS(rs, 2)]), TR, ms, &(x[0]));
|
d@0
|
129 ST(&(x[WS(rs, 10)]), TN, ms, &(x[0]));
|
d@0
|
130 ST(&(x[WS(rs, 14)]), TQ, ms, &(x[0]));
|
d@0
|
131 T18 = VFMA(LDK(KP707106781), T17, T14);
|
d@0
|
132 T1u = VFNMS(LDK(KP707106781), T17, T14);
|
d@0
|
133 T1y = VSUB(T1e, T1b);
|
d@0
|
134 T1f = VADD(T1b, T1e);
|
d@0
|
135 T1g = VFNMS(LDK(KP923879532), T1f, T18);
|
d@0
|
136 T1q = VFMA(LDK(KP923879532), T1f, T18);
|
d@0
|
137 T1j = VFNMS(LDK(KP707106781), T1i, T1h);
|
d@0
|
138 T1x = VFMA(LDK(KP707106781), T1i, T1h);
|
d@0
|
139 T1v = VADD(T1k, T1l);
|
d@0
|
140 T1m = VSUB(T1k, T1l);
|
d@0
|
141 T1n = VFNMS(LDK(KP923879532), T1m, T1j);
|
d@0
|
142 T1r = VFMA(LDK(KP923879532), T1m, T1j);
|
d@0
|
143 T1o = VFNMSI(T1n, T1g);
|
d@0
|
144 T1p = VFMAI(T1n, T1g);
|
d@0
|
145 ST(&(x[WS(rs, 9)]), T1o, ms, &(x[WS(rs, 1)]));
|
d@0
|
146 T1t = VFMAI(T1r, T1q);
|
d@0
|
147 T1s = VFNMSI(T1r, T1q);
|
d@0
|
148 ST(&(x[WS(rs, 15)]), T1t, ms, &(x[WS(rs, 1)]));
|
d@0
|
149 ST(&(x[WS(rs, 7)]), T1p, ms, &(x[WS(rs, 1)]));
|
d@0
|
150 ST(&(x[WS(rs, 1)]), T1s, ms, &(x[WS(rs, 1)]));
|
d@0
|
151 T1w = VFNMS(LDK(KP923879532), T1v, T1u);
|
d@0
|
152 T1C = VFMA(LDK(KP923879532), T1v, T1u);
|
d@0
|
153 T1z = VFNMS(LDK(KP923879532), T1y, T1x);
|
d@0
|
154 T1D = VFMA(LDK(KP923879532), T1y, T1x);
|
d@0
|
155 T1A = VFNMSI(T1z, T1w);
|
d@0
|
156 T1B = VFMAI(T1z, T1w);
|
d@0
|
157 ST(&(x[WS(rs, 5)]), T1A, ms, &(x[WS(rs, 1)]));
|
d@0
|
158 T1F = VFNMSI(T1D, T1C);
|
d@0
|
159 T1E = VFMAI(T1D, T1C);
|
d@0
|
160 ST(&(x[WS(rs, 13)]), T1F, ms, &(x[WS(rs, 1)]));
|
d@0
|
161 ST(&(x[WS(rs, 11)]), T1B, ms, &(x[WS(rs, 1)]));
|
d@0
|
162 ST(&(x[WS(rs, 3)]), T1E, ms, &(x[WS(rs, 1)]));
|
d@0
|
163 }
|
d@0
|
164 }
|