annotate Lib/fftw-3.2.1/cell/spu/spu_t1fv_10.spuc @ 2:c649e493c30a

Removed a redundant cout<<
author Geogaddi\David <d.m.ronan@qmul.ac.uk>
date Thu, 09 Jul 2015 21:45:55 +0100
parents 25bf17994ef1
children
rev   line source
d@0 1 /*
d@0 2 * Copyright (c) 2003, 2007-8 Matteo Frigo
d@0 3 * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology
d@0 4 *
d@0 5 * This program is free software; you can redistribute it and/or modify
d@0 6 * it under the terms of the GNU General Public License as published by
d@0 7 * the Free Software Foundation; either version 2 of the License, or
d@0 8 * (at your option) any later version.
d@0 9 *
d@0 10 * This program is distributed in the hope that it will be useful,
d@0 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
d@0 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
d@0 13 * GNU General Public License for more details.
d@0 14 *
d@0 15 * You should have received a copy of the GNU General Public License
d@0 16 * along with this program; if not, write to the Free Software
d@0 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
d@0 18 *
d@0 19 */
d@0 20 /* Generated by: ../../genfft/gen_twiddle_c -standalone -fma -reorder-insns -simd -compact -variables 100000 -include fftw-spu.h -trivial-stores -n 10 -name X(spu_t1fv_10) */
d@0 21
d@0 22 /*
d@0 23 * This function contains 51 FP additions, 40 FP multiplications,
d@0 24 * (or, 33 additions, 22 multiplications, 18 fused multiply/add),
d@0 25 * 67 stack variables, 4 constants, and 20 memory accesses
d@0 26 */
d@0 27 #include "fftw-spu.h"
d@0 28
d@0 29 void X(spu_t1fv_10) (R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) {
d@0 30 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
d@0 31 DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
d@0 32 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
d@0 33 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
d@0 34 INT m;
d@0 35 R *x;
d@0 36 x = ri;
d@0 37 for (m = mb, W = W + (mb * ((TWVL / VL) * 18)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(rs)) {
d@0 38 V T4, TF, Tv, Tw, TR, TQ, TM, TO, Tt, Tr, T1, T3, T2, T9, TG;
d@0 39 V Tp, TK, Te, TH, Tk, TJ, T6, T8, T5, T7, Tm, To, Tl, Tn, Tb;
d@0 40 V Td, Ta, Tc, Th, Tj, Tg, Ti, Tf, Tq, TI, TL, Ts, TN, TE, TZ;
d@0 41 V Tx, TB, Tu, TA, Tz, TC, Ty, TD, TS, TW, TP, TV, TU, TX, TT;
d@0 42 V TY;
d@0 43 T1 = LD(&(x[0]), ms, &(x[0]));
d@0 44 T2 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
d@0 45 T3 = BYTWJ(&(W[TWVL * 8]), T2);
d@0 46 T4 = VSUB(T1, T3);
d@0 47 TF = VADD(T1, T3);
d@0 48 T5 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
d@0 49 T6 = BYTWJ(&(W[TWVL * 2]), T5);
d@0 50 T7 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
d@0 51 T8 = BYTWJ(&(W[TWVL * 12]), T7);
d@0 52 T9 = VSUB(T6, T8);
d@0 53 TG = VADD(T6, T8);
d@0 54 Tl = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
d@0 55 Tm = BYTWJ(&(W[TWVL * 10]), Tl);
d@0 56 Tn = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
d@0 57 To = BYTWJ(&(W[0]), Tn);
d@0 58 Tp = VSUB(Tm, To);
d@0 59 TK = VADD(Tm, To);
d@0 60 Ta = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
d@0 61 Tb = BYTWJ(&(W[TWVL * 14]), Ta);
d@0 62 Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
d@0 63 Td = BYTWJ(&(W[TWVL * 4]), Tc);
d@0 64 Te = VSUB(Tb, Td);
d@0 65 TH = VADD(Tb, Td);
d@0 66 Tg = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
d@0 67 Th = BYTWJ(&(W[TWVL * 6]), Tg);
d@0 68 Ti = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
d@0 69 Tj = BYTWJ(&(W[TWVL * 16]), Ti);
d@0 70 Tk = VSUB(Th, Tj);
d@0 71 TJ = VADD(Th, Tj);
d@0 72 Tv = VSUB(T9, Te);
d@0 73 Tf = VADD(T9, Te);
d@0 74 Tq = VADD(Tk, Tp);
d@0 75 Tw = VSUB(Tk, Tp);
d@0 76 TR = VSUB(TG, TH);
d@0 77 TI = VADD(TG, TH);
d@0 78 TL = VADD(TJ, TK);
d@0 79 TQ = VSUB(TJ, TK);
d@0 80 TM = VADD(TI, TL);
d@0 81 TO = VSUB(TI, TL);
d@0 82 Tt = VSUB(Tf, Tq);
d@0 83 Tr = VADD(Tf, Tq);
d@0 84 TE = VADD(T4, Tr);
d@0 85 Ts = VFNMS(LDK(KP250000000), Tr, T4);
d@0 86 ST(&(x[WS(rs, 5)]), TE, ms, &(x[WS(rs, 1)]));
d@0 87 TZ = VADD(TF, TM);
d@0 88 TN = VFNMS(LDK(KP250000000), TM, TF);
d@0 89 ST(&(x[0]), TZ, ms, &(x[0]));
d@0 90 Tx = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Tw, Tv));
d@0 91 TB = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tv, Tw));
d@0 92 Tu = VFMA(LDK(KP559016994), Tt, Ts);
d@0 93 TA = VFNMS(LDK(KP559016994), Tt, Ts);
d@0 94 Ty = VFNMSI(Tx, Tu);
d@0 95 Tz = VFMAI(Tx, Tu);
d@0 96 ST(&(x[WS(rs, 1)]), Ty, ms, &(x[WS(rs, 1)]));
d@0 97 TD = VFMAI(TB, TA);
d@0 98 TC = VFNMSI(TB, TA);
d@0 99 ST(&(x[WS(rs, 7)]), TD, ms, &(x[WS(rs, 1)]));
d@0 100 ST(&(x[WS(rs, 9)]), Tz, ms, &(x[WS(rs, 1)]));
d@0 101 ST(&(x[WS(rs, 3)]), TC, ms, &(x[WS(rs, 1)]));
d@0 102 TS = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TR, TQ));
d@0 103 TW = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TQ, TR));
d@0 104 TP = VFNMS(LDK(KP559016994), TO, TN);
d@0 105 TV = VFMA(LDK(KP559016994), TO, TN);
d@0 106 TT = VFMAI(TS, TP);
d@0 107 TU = VFNMSI(TS, TP);
d@0 108 ST(&(x[WS(rs, 2)]), TT, ms, &(x[0]));
d@0 109 TY = VFNMSI(TW, TV);
d@0 110 TX = VFMAI(TW, TV);
d@0 111 ST(&(x[WS(rs, 6)]), TY, ms, &(x[0]));
d@0 112 ST(&(x[WS(rs, 8)]), TU, ms, &(x[0]));
d@0 113 ST(&(x[WS(rs, 4)]), TX, ms, &(x[0]));
d@0 114 }
d@0 115 }