d@0
|
1 /*
|
d@0
|
2 * Copyright (c) 2003, 2007-8 Matteo Frigo
|
d@0
|
3 * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology
|
d@0
|
4 *
|
d@0
|
5 * This program is free software; you can redistribute it and/or modify
|
d@0
|
6 * it under the terms of the GNU General Public License as published by
|
d@0
|
7 * the Free Software Foundation; either version 2 of the License, or
|
d@0
|
8 * (at your option) any later version.
|
d@0
|
9 *
|
d@0
|
10 * This program is distributed in the hope that it will be useful,
|
d@0
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
d@0
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
d@0
|
13 * GNU General Public License for more details.
|
d@0
|
14 *
|
d@0
|
15 * You should have received a copy of the GNU General Public License
|
d@0
|
16 * along with this program; if not, write to the Free Software
|
d@0
|
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
d@0
|
18 *
|
d@0
|
19 */
|
d@0
|
20 /* Generated by: ../../genfft/gen_twiddle_c -standalone -fma -reorder-insns -simd -compact -variables 100000 -include fftw-spu.h -trivial-stores -n 10 -name X(spu_t1fv_10) */
|
d@0
|
21
|
d@0
|
22 /*
|
d@0
|
23 * This function contains 51 FP additions, 40 FP multiplications,
|
d@0
|
24 * (or, 33 additions, 22 multiplications, 18 fused multiply/add),
|
d@0
|
25 * 67 stack variables, 4 constants, and 20 memory accesses
|
d@0
|
26 */
|
d@0
|
27 #include "fftw-spu.h"
|
d@0
|
28
|
d@0
|
29 void X(spu_t1fv_10) (R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) {
|
d@0
|
30 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
d@0
|
31 DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
|
d@0
|
32 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
d@0
|
33 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
d@0
|
34 INT m;
|
d@0
|
35 R *x;
|
d@0
|
36 x = ri;
|
d@0
|
37 for (m = mb, W = W + (mb * ((TWVL / VL) * 18)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(rs)) {
|
d@0
|
38 V T4, TF, Tv, Tw, TR, TQ, TM, TO, Tt, Tr, T1, T3, T2, T9, TG;
|
d@0
|
39 V Tp, TK, Te, TH, Tk, TJ, T6, T8, T5, T7, Tm, To, Tl, Tn, Tb;
|
d@0
|
40 V Td, Ta, Tc, Th, Tj, Tg, Ti, Tf, Tq, TI, TL, Ts, TN, TE, TZ;
|
d@0
|
41 V Tx, TB, Tu, TA, Tz, TC, Ty, TD, TS, TW, TP, TV, TU, TX, TT;
|
d@0
|
42 V TY;
|
d@0
|
43 T1 = LD(&(x[0]), ms, &(x[0]));
|
d@0
|
44 T2 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
d@0
|
45 T3 = BYTWJ(&(W[TWVL * 8]), T2);
|
d@0
|
46 T4 = VSUB(T1, T3);
|
d@0
|
47 TF = VADD(T1, T3);
|
d@0
|
48 T5 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
d@0
|
49 T6 = BYTWJ(&(W[TWVL * 2]), T5);
|
d@0
|
50 T7 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
d@0
|
51 T8 = BYTWJ(&(W[TWVL * 12]), T7);
|
d@0
|
52 T9 = VSUB(T6, T8);
|
d@0
|
53 TG = VADD(T6, T8);
|
d@0
|
54 Tl = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
d@0
|
55 Tm = BYTWJ(&(W[TWVL * 10]), Tl);
|
d@0
|
56 Tn = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
d@0
|
57 To = BYTWJ(&(W[0]), Tn);
|
d@0
|
58 Tp = VSUB(Tm, To);
|
d@0
|
59 TK = VADD(Tm, To);
|
d@0
|
60 Ta = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
|
d@0
|
61 Tb = BYTWJ(&(W[TWVL * 14]), Ta);
|
d@0
|
62 Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
d@0
|
63 Td = BYTWJ(&(W[TWVL * 4]), Tc);
|
d@0
|
64 Te = VSUB(Tb, Td);
|
d@0
|
65 TH = VADD(Tb, Td);
|
d@0
|
66 Tg = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
d@0
|
67 Th = BYTWJ(&(W[TWVL * 6]), Tg);
|
d@0
|
68 Ti = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
|
d@0
|
69 Tj = BYTWJ(&(W[TWVL * 16]), Ti);
|
d@0
|
70 Tk = VSUB(Th, Tj);
|
d@0
|
71 TJ = VADD(Th, Tj);
|
d@0
|
72 Tv = VSUB(T9, Te);
|
d@0
|
73 Tf = VADD(T9, Te);
|
d@0
|
74 Tq = VADD(Tk, Tp);
|
d@0
|
75 Tw = VSUB(Tk, Tp);
|
d@0
|
76 TR = VSUB(TG, TH);
|
d@0
|
77 TI = VADD(TG, TH);
|
d@0
|
78 TL = VADD(TJ, TK);
|
d@0
|
79 TQ = VSUB(TJ, TK);
|
d@0
|
80 TM = VADD(TI, TL);
|
d@0
|
81 TO = VSUB(TI, TL);
|
d@0
|
82 Tt = VSUB(Tf, Tq);
|
d@0
|
83 Tr = VADD(Tf, Tq);
|
d@0
|
84 TE = VADD(T4, Tr);
|
d@0
|
85 Ts = VFNMS(LDK(KP250000000), Tr, T4);
|
d@0
|
86 ST(&(x[WS(rs, 5)]), TE, ms, &(x[WS(rs, 1)]));
|
d@0
|
87 TZ = VADD(TF, TM);
|
d@0
|
88 TN = VFNMS(LDK(KP250000000), TM, TF);
|
d@0
|
89 ST(&(x[0]), TZ, ms, &(x[0]));
|
d@0
|
90 Tx = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Tw, Tv));
|
d@0
|
91 TB = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tv, Tw));
|
d@0
|
92 Tu = VFMA(LDK(KP559016994), Tt, Ts);
|
d@0
|
93 TA = VFNMS(LDK(KP559016994), Tt, Ts);
|
d@0
|
94 Ty = VFNMSI(Tx, Tu);
|
d@0
|
95 Tz = VFMAI(Tx, Tu);
|
d@0
|
96 ST(&(x[WS(rs, 1)]), Ty, ms, &(x[WS(rs, 1)]));
|
d@0
|
97 TD = VFMAI(TB, TA);
|
d@0
|
98 TC = VFNMSI(TB, TA);
|
d@0
|
99 ST(&(x[WS(rs, 7)]), TD, ms, &(x[WS(rs, 1)]));
|
d@0
|
100 ST(&(x[WS(rs, 9)]), Tz, ms, &(x[WS(rs, 1)]));
|
d@0
|
101 ST(&(x[WS(rs, 3)]), TC, ms, &(x[WS(rs, 1)]));
|
d@0
|
102 TS = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TR, TQ));
|
d@0
|
103 TW = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TQ, TR));
|
d@0
|
104 TP = VFNMS(LDK(KP559016994), TO, TN);
|
d@0
|
105 TV = VFMA(LDK(KP559016994), TO, TN);
|
d@0
|
106 TT = VFMAI(TS, TP);
|
d@0
|
107 TU = VFNMSI(TS, TP);
|
d@0
|
108 ST(&(x[WS(rs, 2)]), TT, ms, &(x[0]));
|
d@0
|
109 TY = VFNMSI(TW, TV);
|
d@0
|
110 TX = VFMAI(TW, TV);
|
d@0
|
111 ST(&(x[WS(rs, 6)]), TY, ms, &(x[0]));
|
d@0
|
112 ST(&(x[WS(rs, 8)]), TU, ms, &(x[0]));
|
d@0
|
113 ST(&(x[WS(rs, 4)]), TX, ms, &(x[0]));
|
d@0
|
114 }
|
d@0
|
115 }
|