annotate Lib/fftw-3.2.1/doc/html/.svn/text-base/Advanced-Complex-DFTs.html.svn-base @ 13:a64055168b9b

Added XML Support
author Geogaddi\David <d.m.ronan@qmul.ac.uk>
date Fri, 05 Feb 2016 19:21:42 +0000
parents 25bf17994ef1
children
rev   line source
d@0 1 <html lang="en">
d@0 2 <head>
d@0 3 <title>Advanced Complex DFTs - FFTW 3.2.1</title>
d@0 4 <meta http-equiv="Content-Type" content="text/html">
d@0 5 <meta name="description" content="FFTW 3.2.1">
d@0 6 <meta name="generator" content="makeinfo 4.8">
d@0 7 <link title="Top" rel="start" href="index.html#Top">
d@0 8 <link rel="up" href="Advanced-Interface.html#Advanced-Interface" title="Advanced Interface">
d@0 9 <link rel="prev" href="Advanced-Interface.html#Advanced-Interface" title="Advanced Interface">
d@0 10 <link rel="next" href="Advanced-Real_002ddata-DFTs.html#Advanced-Real_002ddata-DFTs" title="Advanced Real-data DFTs">
d@0 11 <link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
d@0 12 <!--
d@0 13 This manual is for FFTW
d@0 14 (version 3.2.1, 5 February 2009).
d@0 15
d@0 16 Copyright (C) 2003 Matteo Frigo.
d@0 17
d@0 18 Copyright (C) 2003 Massachusetts Institute of Technology.
d@0 19
d@0 20 Permission is granted to make and distribute verbatim copies of
d@0 21 this manual provided the copyright notice and this permission
d@0 22 notice are preserved on all copies.
d@0 23
d@0 24 Permission is granted to copy and distribute modified versions of
d@0 25 this manual under the conditions for verbatim copying, provided
d@0 26 that the entire resulting derived work is distributed under the
d@0 27 terms of a permission notice identical to this one.
d@0 28
d@0 29 Permission is granted to copy and distribute translations of this
d@0 30 manual into another language, under the above conditions for
d@0 31 modified versions, except that this permission notice may be
d@0 32 stated in a translation approved by the Free Software Foundation.
d@0 33 -->
d@0 34 <meta http-equiv="Content-Style-Type" content="text/css">
d@0 35 <style type="text/css"><!--
d@0 36 pre.display { font-family:inherit }
d@0 37 pre.format { font-family:inherit }
d@0 38 pre.smalldisplay { font-family:inherit; font-size:smaller }
d@0 39 pre.smallformat { font-family:inherit; font-size:smaller }
d@0 40 pre.smallexample { font-size:smaller }
d@0 41 pre.smalllisp { font-size:smaller }
d@0 42 span.sc { font-variant:small-caps }
d@0 43 span.roman { font-family:serif; font-weight:normal; }
d@0 44 span.sansserif { font-family:sans-serif; font-weight:normal; }
d@0 45 --></style>
d@0 46 </head>
d@0 47 <body>
d@0 48 <div class="node">
d@0 49 <p>
d@0 50 <a name="Advanced-Complex-DFTs"></a>
d@0 51 Next:&nbsp;<a rel="next" accesskey="n" href="Advanced-Real_002ddata-DFTs.html#Advanced-Real_002ddata-DFTs">Advanced Real-data DFTs</a>,
d@0 52 Previous:&nbsp;<a rel="previous" accesskey="p" href="Advanced-Interface.html#Advanced-Interface">Advanced Interface</a>,
d@0 53 Up:&nbsp;<a rel="up" accesskey="u" href="Advanced-Interface.html#Advanced-Interface">Advanced Interface</a>
d@0 54 <hr>
d@0 55 </div>
d@0 56
d@0 57 <h4 class="subsection">4.4.1 Advanced Complex DFTs</h4>
d@0 58
d@0 59 <pre class="example"> fftw_plan fftw_plan_many_dft(int rank, const int *n, int howmany,
d@0 60 fftw_complex *in, const int *inembed,
d@0 61 int istride, int idist,
d@0 62 fftw_complex *out, const int *onembed,
d@0 63 int ostride, int odist,
d@0 64 int sign, unsigned flags);
d@0 65 </pre>
d@0 66 <p><a name="index-fftw_005fplan_005fmany_005fdft-223"></a>
d@0 67 This plans multidimensional complex DFTs, and is exactly the same as
d@0 68 <code>fftw_plan_dft</code> except for the new parameters <code>howmany</code>,
d@0 69 {<code>i</code>,<code>o</code>}<code>nembed</code>, {<code>i</code>,<code>o</code>}<code>stride</code>,
d@0 70 and {<code>i</code>,<code>o</code>}<code>dist</code>.
d@0 71
d@0 72 <p><code>howmany</code> is the number of transforms to compute, where the
d@0 73 <code>k</code>-th transform is of the arrays starting at <code>in+k*idist</code> and
d@0 74 <code>out+k*odist</code>. The resulting plans can often be faster than
d@0 75 calling FFTW multiple times for the individual transforms. The basic
d@0 76 <code>fftw_plan_dft</code> interface corresponds to <code>howmany=1</code> (in which
d@0 77 case the <code>dist</code> parameters are ignored).
d@0 78 <a name="index-howmany-parameter-224"></a><a name="index-dist-225"></a>
d@0 79 The two <code>nembed</code> parameters (which should be arrays of length
d@0 80 <code>rank</code>) indicate the sizes of the input and output array
d@0 81 dimensions, respectively, where the transform is of a subarray of size
d@0 82 <code>n</code>. (Each dimension of <code>n</code> should be <code>&lt;=</code> the
d@0 83 corresponding dimension of the <code>nembed</code> arrays.) That is, the
d@0 84 input and output arrays are stored in row-major order with size given by
d@0 85 <code>nembed</code> (not counting the strides and howmany multiplicities).
d@0 86 Passing <code>NULL</code> for an <code>nembed</code> parameter is equivalent to
d@0 87 passing <code>n</code> (i.e. same physical and logical dimensions, as in the
d@0 88 basic interface.)
d@0 89
d@0 90 <p>The <code>stride</code> parameters indicate that the <code>j</code>-th element of
d@0 91 the input or output arrays is located at <code>j*istride</code> or
d@0 92 <code>j*ostride</code>, respectively. (For a multi-dimensional array,
d@0 93 <code>j</code> is the ordinary row-major index.) When combined with the
d@0 94 <code>k</code>-th transform in a <code>howmany</code> loop, from above, this means
d@0 95 that the (<code>j</code>,<code>k</code>)-th element is at <code>j*stride+k*dist</code>.
d@0 96 (The basic <code>fftw_plan_dft</code> interface corresponds to a stride of 1.)
d@0 97 <a name="index-stride-226"></a>
d@0 98 For in-place transforms, the input and output <code>stride</code> and
d@0 99 <code>dist</code> parameters should be the same; otherwise, the planner may
d@0 100 return <code>NULL</code>.
d@0 101
d@0 102 <p>Arrays <code>n</code>, <code>inembed</code>, and <code>onembed</code> are not used after
d@0 103 this function returns. You can safely free or reuse them.
d@0 104
d@0 105 <p>So, for example, to transform a sequence of contiguous arrays, stored
d@0 106 one after another, one would use a <code>stride</code> of 1 and a <code>dist</code>
d@0 107 of N, where N is the product of the dimensions. In
d@0 108 another example, to transform an array of contiguous &ldquo;vectors&rdquo; of
d@0 109 length M, one would use a <code>howmany</code> of M, a
d@0 110 <code>stride</code> of M, and a <code>dist</code> of 1.
d@0 111 <a name="index-vector-227"></a>
d@0 112 <!-- =========> -->
d@0 113
d@0 114 </body></html>
d@0 115